
Designing better Graph Convolutional Networks:

Scaling Graph Propagation based Neural Networks for

Collective Classification

A THESIS

submitted by

PRIYESH V

for the award of the degree

of

MASTER OF SCIENCE
(by Research)

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

JUNE 2019

THESIS CERTIFICATE

This is to certify that the thesis titled Designing better Graph Convolutional Net-

works: Scaling Graph Propagation Neural Networks for Collective Classification,

submitted by Priyesh V, to the Indian Institute of Technology, Madras, for the award

of the degree of Master of Science (by Research), is a bona fide record of the research

work done by him under my supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University for the award of any degree

or diploma.

Dr. Balaraman Ravindran
Research Guide
Professor
Dept. of CSE
IIT-Madras, 600 036

Place: Chennai

Date: 27-06-2019

ACKNOWLEDGEMENTS

Herein, I wish to express my sincere gratitude to everyone who has and is continuing to

influence me positively. The first and foremost influential set of people in my life are my

parents, Vijayan and Muthulekshmi and my research advisor, Prof. Ravindran. They

have believed in me and supported me in multiple aspects of my life. Especially Ravi

sir, who gave me my freedom to explore in my research and entrepreneurial journey.

I have closely known Ravi sir for more than five years now dating back from my

days at Ericsson. Ravi sir has been my dose of inspiration at IIT Madras. I have men-

tioned multiple times to my friends that he is our dark knight. The hero who works

tirelessly to provide a better research stage to his students and his country. Seeing him

push his limits every day allows me to give my best too. I enjoyed every interaction

with him on research, especially our brainstorming sessions on numerous projects. I

learned from him that it is essential to work on a good problem and also take pride in it.

Secondly, I would like to thank Prof. Mitesh. He has always made me feel comfort-

able with him just like friends do. I’m thankful to him for giving me the opportunity

to work with him and explore NLP without any background. He has made realize the

importance of meticulous preparation and doing disciplined research.

I’m privileged to work with Prof. Srinivasan. Our interactions improved my un-

derstanding of numerous problems in Social networks and data mining. I’m grateful to

him for honing my analysis skills from our discussions.

A special thanks to Yash Chandak and Anasua. Numerous night outs and endless

discussions with them has resulted in this thesis. Both of them were instrumental in

finishing this thesis.

I’m grateful to be a part of RISE lab and RBC-DSAI. They have provided me with

the opportunity to work and interact with many brilliant minds. Beethika, Preksha,

Patanjali, Nikita, Sapana, Mittal, Sudarshan, Maurya, Tarun, Thiagarajan, Azhagesan,

Shubho, Sidharth and Pallavi are my cool peers whom I mostly hang out with and do

i

research in the lab. Without them, I wouldn’t have had the opportunity to be aware,

learn and work on diverse and exciting projects. Course projects wouldn’t have been

any fun without my awesome teammates, Vishruit, Jyotsna and Suresh.

I also thank my close friends, Suresh, Madhuri and Prasanna who made stay com-

fortable at IIT Madras. Even after they left IIT Madras, they have always stayed in touch

and motivated me. Mentoring and working with juniors were super fun. I thank Yash,

Aakash, Sachin, Harsha, Ujjuwal, Mohan, Karthik, Karan, Gautham, Dhruv, Sowmya,

Charumathi, Sankaran, Kavita, PavitraKumar, Aditya, Vijay, Heeth, Vinodhini, Va-

sumathi, Arun, Divakar, Arjhun and the school kids who came for the RSIC internship

for providing me a chance to learn and grow with you.

Finally, I would like to end with thanking my most favorite set of people. I thank

(i) My brother, Ratheesh for being supportive always (ii) my best buddies who are my

constants and go to persons throughout my life: Ram, Praveen, Vimal, Aswini, Raga,

Keerthana, Nandhini, Aswathy, Prakash, Gautham, Manoj and Praveen and (iii) my

mentors Shivashankar and Sarath.

ii

ABSTRACT

KEYWORDS: Semi-Supervised Learning, Representation Learning, Relational

Learning, Collective Classification, Node Classification, Deep

Learning, Graph Convolutional Networks

In many real-life applications, entities in an environment are not independent but rather

influenced by each other through their interactions. Such relational datasets are popu-

larly modeled as graphs where the entities make up the node, and the edges represent

an interaction. Learning algorithms for node classification on such relational data is

different from conventional machine learning algorithms which ignore the relational in-

formation and assumes samples (entities) are drawn from an IID. Relational learning

algorithms for node classification should adhere to the structure of the data and capture

complex correlations between the node and its neighbors for the classification task.

Given a graph where every node has specific attributes associated with it, and some

nodes have labels associated with them. Collective Classification is the task of assigning

labels to every unlabeled node using information from the node as well as its neighbors.

It is often the case that a node is not only influenced by its immediate neighbors but

also by it’s higher order neighbors, multiple hops away. Variants of Graph Convolu-

tional Neural Networks (GCNs) are the state-of-the-art neural network architectures for

Collective Classification. GCNs are end-to-end differentiable variations of recursively

defined graph kernels that aggregate and filter multi-hop neighborhood information.

In this work, we propose a Higher Order Propagation Framework, HOPF, which pro-

vides an iterative inference mechanism for these powerful differentiable kernels. Such

a combination of classical iterative inference mechanism with recent differentiable ker-

nels allows the framework to learn graph convolutional filters that simultaneously ex-

ploit the attribute and label information available in the neighborhood. Further, these

iterative differentiable kernels can scale to larger hops beyond the memory limitations

of existing differentiable kernels. The proposed modular framework enables us to bet-

ter analyze the relative merits and demerits of numerous existing models as specific

iii

instantiations of our framework. Through these analyses, we observe two hitherto in-

capacities of current models that results in Node Information Morphing and Recursive

weight dependency issues.

The Node Information Morphing issue points out that the original information at

the node is morphed or averaged out by its multi-hop neighborhood information ex-

ponentially. To alleviate this issue, we propose an instantiation of HOPF called the

Node Information Preserving (NIP) kernels which addresses the NIM issue by explic-

itly preserving the node information at every propagation step of GCN. Secondly, we

focus on the problems imposed by Recursive weight dependencies in GCNs. These re-

cursively defined networks have limited representation capacity to regulate information

from multiple hops independently. We propose a simple extension to GCNs, Fusion

Graph Convolutional Networks that contains a linear fusion component that mitigates

this issue by leveraging our observation that GCNs are graph kernels with binomial ba-

sis. We extensively evaluate and demonstrate the superiority of the proposed models on

datasets from biology, bibliography, sociology and finance domains under transductive

and inductive learning setup.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iii

LIST OF TABLES ix

LIST OF FIGURES xi

ABBREVIATIONS xiii

NOTATION xv

1 Introduction 1

1.1 Network Representation learning 1

1.2 Collective Classification . 2

1.3 Contributions of this Thesis . 4

1.3.1 Higher Order Propagation Framework 4

1.3.2 Fusion Graph Convolutional Networks 5

1.4 Outline of the thesis . 5

2 Background and Related works 7

2.1 Notations . 8

2.2 Graph-based Semi-Supervised learning 8

2.3 Spectral Kernels . 9

2.3.1 Regularization with Spectral kernels 9

2.3.2 Convolutions with Spectral kernels 11

2.3.3 Chebyshev Neural Network 13

2.4 Graph Convolutional Networks . 13

2.4.1 Relation to Weisfeiler-Lehman (WL) algorithm 14

2.5 GraphSAGE . 15

2.6 Iterative Collective classification Algorithm 16

v

2.7 Semi-Supervised Non-Negative Matrix Factorization for clusterable graph
embeddings (SS-NMF) . 17

2.7.1 Notations for SS-NMF . 18

2.7.2 SS-NMF:Semi-Supervised NMF model 18

2.7.3 Optimization . 21

2.7.4 Experiments . 23

3 Higher Order Propagation Framework 35

3.1 Generic propagation kernel . 36

3.1.1 Relation to existing works: 37

3.2 Node Information Morphing (NIM): Analysis 38

3.3 Node Information Preserving models 39

3.4 Higher Order Propagation Framework: HOPF 40

3.5 Iterative NIP Mean Kernel: I-NIP-MEAN 42

3.6 Scalability analysis: . 44

3.7 Miscellaneous related works . 45

3.8 Experiments . 46

3.8.1 Dataset details . 46

3.8.2 Experiment setup: . 48

3.8.3 Implementation details . 49

3.8.4 Models compared: . 51

3.9 Results and Discussions . 51

3.9.1 A measure of consistency across datasets 51

3.9.2 Baselines Vs. Collective Classification (CC) models 53

3.9.3 WL-Kernels Vs NIP-Kernels 53

3.9.4 Iterative inference models Vs. Differentiable kernels 55

3.9.5 Inductive learning on Human dataset 55

4 Fusion Graph Convolutional Networks 57

4.1 Unified Recursive Graph Propagation Kernel 57

4.2 Lack of independent regulatory paths to different hops 59

4.2.1 Inclusion of bias . 60

4.2.2 Inclusion of skip connections 61

vi

4.2.3 Inclusion of different weights 61

4.3 Proposed Methodology . 64

4.3.1 Binomial basis . 65

4.3.2 Linear Fusion Component 66

4.3.3 Fusion Graph Convolutional Network 67

4.4 Relation to other existing works 68

4.5 Experiment results . 69

5 Conclusion and Future Works 75

LIST OF TABLES

2.1 Dataset statistics . 23

2.2 The wide and narrow ranges of hyperparameters. A: NMF:P, B: NMF:P+Y,
C: MMDW, D: MNMF, E: MF-Planetoid, F: SS-NMF 26

2.3 Node Classification Results | Micro-F1 Scores 26

2.4 Importance of Label Information 28

2.5 Importance of Cluster Information 29

2.6 Semi-Supervised Learning Analysis | Micro-F1 Scores 30

2.7 Node Clustering | (O)NMI Scores 31

3.1 Baselines, existing and proposed models seen as instantiations of the
proposed framework. 36

3.2 Dataset stats: |V|, |E|, |F|, |L|, Lm denote number of nodes, edges, fea-
tures, labels and is it a multi-label dataset ? 47

3.3 Hyperparameters for different datasets 51

3.4 Results in Micro-F1 for Transductive experiments. Lower shortfall is
better. Top two results in each column in bold. 52

3.5 Results in Micro-F1 for Inductive learning on Human Tissues 53

4.1 Number of Identity and F(A) transformations 64

4.2 Transductive Experiments . 70

4.3 Inductive learning experiment with Human dataset: 70

4.4 FGCN Vs NIP kernel . 72

4.5 I-F-GCN Vs FGCN . 73

4.6 I-F-GCN Vs I-F-NIP-MEAN . 73

4.7 NIP-MEAN with Fusion and Iterative leanring 73

ix

LIST OF FIGURES

2.1 Information Propagation in 1-d Weisfieler Lehman algorithm 15

2.2 t-SNE Visualization of Embeddings on Citeseer Dataset for Unsuper-
vised & Semi-Supervised Methods 18

2.3 Unsupervised node embedding . 19

2.4 Semi-Supervised node embedding 19

2.5 SS-NMF: Semi-Supervised NMF 21

2.6 t-SNE Visualization of Embeddings on Cora Dataset for Unsupervised
& Semi-Supervised Methods . 32

2.7 Varying Number of Clusters . 33

3.1 GCNs coupled with iterative learning 41

3.2 HOPF explained with a chain graph 42

3.3 Impact of NIP-Mean’s performance as percentage of neighbors consid-
ered . 45

4.1 Binomial Computation Trees for Graph Kernels 62

4.2 Illustration of information propagation in Fusion incorporated WL-kernels 66

4.3 F-GCN performance with hops 1-4 71

xi

ABBREVIATIONS

SSL Semi-Supervised Learning

NRL Network Representation Learning

CC Collective Classification

PSD Positive Semi-Definite

IID Independent and Identically distributed

PCA Principal Component Analysis

NMI Normalized Mutual Information

KKT Karush−KuhnTucker

ReLU Rectified Linear Unit

NMF Non-negative Matrix Factorization

SS-NMF Semi-Supervised NMF

GRU Gated Recurrent Units

LSTM Long Short Term Memory

GNN Graph Neural Networks

GCN Graph Convolutional Neural network

F-GCN Fusion GCN

GraphSAGE Graph SAmple and Aggregate

GS-MEAN GraphSAGE with MEAN pooling aggregator

GS-MAX GraphSAGE with MAX pooling aggregator

GS-LSTM GraphSAGE with LSTM aggregator

HOPF Higher Order Propagation Framework

NIM Node Information Morphing

NIP Node Information Preserving

I-NIP Iterative NIP

WL Weisfeiler Lehman

LP Label Propagation

ICA Iteartive Collective classification Algorithm

t-SNE t-Distributed Stochastic Neighbor Embedding

xiii

GEMSEC Graph Embedding with Self Clustering

ComE Community Embedding

MMDW Max-Margin DeepWalk

GPU Graphic Processing Unit

CONCAT Concatenate

PPI Protein-Protein Interaction

BL_NODE Baseline: Node feature

BL_NEIGH Baseline: Neighbor features

xiv

NOTATION

R Set of real numbers
G Graph
V Vertex set of a graph, G
E Edge set of a graph, G
n Number of nodes, |V | in a graph G
f Number of features for nodes, V
S Set of labeled nodes
U Set of unlabeled nodes
X Nodes’ feature matrix; X ∈ Rn∗f

l Number of labels for nodes, V
Y Nodes’ label matrix; Y ∈ [0, 1]|S|∗f

Ŷ Nodes’ predicted label matrix; Y ∈ Rn∗f

I Identity matrix ∈ Rn∗n

A Adjacency matrix of a graph, G; A ∈ Rn∗n

P Proximity matrix of a graph, G; P ∈ Rn∗n

D Diagonal Degree matrix of a graph, G; D ∈ Rn∗n

L Laplacian matrix of a graph, G; L ∈ Rn∗n

L̂ Re-normalized Laplacian matrix of a graph, G; L ∈ Rn∗n

K Desired neighborhood size in hops; K ≥ 0
C Number of convolutional layers in GCNs); C ≤ K

Neighborhood size captured by GCNs; Typically, C=K
k kth differentiable layer of GCNs; k ≤ K
T Number of iterative learning or inference steps
t tth iterative step; t ≤ T
hk kth hidden layer of a neural network
σk kth neural network layer’s activation function
Φk Node features of kth layer of GCNs
Ψk Neighborhood features of kth layer of GCNS
Ξt Neighborhood features of tth iterative step
Ŷt Label based neighborhood features of tth iterative step
Wk Weights of kth layer neural network; Wk ∈ Rd∗d

WL Weights of the label layer of a neural network;
WΦ
k Weights associated with kth layer’s node features, Φk

WΨ
k Weights associated with kth layer’s neighborhood features, Ψk

α Importance of nodes features, Φk

β Importance of neighborhood features , Ψk

F (A) Function of Adjacency matrix
O Big O notation

xv

CHAPTER 1

Introduction

An efficient representation of data is critical for analysis and learning tasks. Efficient in

terms of space allows data processing algorithms to scale and efficient in terms of in-

formation allows processing algorithms to effectively uncover the different explanatory

factors behind the variation in data. Devising learning algorithms explicitly to derive

efficient representations for the end applications is crucial as it allows to conveniently

encode general priors in the data like smoothness, sparsity, clustering, manifolds, mul-

tiple explanatory factors, etc.

Manifold learning and the more generic Representation learning are the two sub-

fields of machine learning that focus on finding efficient data representations for ma-

chine learning tasks with an intent to uncover the structure in the data. Manifold learn-

ing methods are dimensionality reduction techniques that find a dense new coordinate

system in low-dimensional regions of the original data, whereas Representation learn-

ing methods can also produce sparse over-complete features in a high dimensional space

with more dimensions than the input (Poultney et al., 2007). Matrix (Tensor) factoriza-

tion and Neural networks are two powerful and commonly used representation learning

methods. In the current era of the burgeoning field of Deep Learning, deep neural net-

work architectures have become the unanimous choice of representation learning in a

majority of the domains for large data.

1.1 Network Representation learning

In many real-life applications such as social networks, citation networks, protein inter-

action networks, etc., the entities in an environment are not independent but rather influ-

enced by each other through their interactions. Network representation learning (NRL),

focuses on extracting useful features in such complex networked data. Network data,

unlike conventional data, does not follow the assumption that samples are drawn from

an independent and identically distribution (IID) and additionally have some inherent

structure. Network data may contain homogeneous or heterogeneous nodes which may

exhibit one or more (un)directed homophilous or heterophilous relationships between

nodes or even both. Network data can also contain one or more contextual features asso-

ciated with nodes or relations. Representation learning algorithms for networks should

preserve the structure in the data explicitly and encode the necessary priors required for

the end task. Depending on the task, representations are learned for nodes, relations

and the entire graph as such.

Such network data or relational data have been popularly modeled as graphs where

the entities make up the node, and the edges represent an interaction. The use of graph-

based learning algorithms has increasingly gained traction owing to their ability to

model structured data. Categorizing such entities requires extracting relational infor-

mation from their multi-hop neighborhoods and combining that efficiently with their

features. Summarizing information from multiple hops is useful in many applications

where there exists semantics in local and group level interactions among entities. Thus,

defining and finding the significance of neighborhood information over multiple hops

becomes an essential aspect of the problem.

1.2 Collective Classification

Given a graph where every node has specific attributes associated with it, and some

nodes have labels associated with them, Collective Classification (CC) (Neville and

Jensen (2000); Lu and Getoor (2003); Sen P et al. (2008)) is the task of assigning labels

to the remaining unlabeled nodes in the graph. A vital task here is to extract relational

features for every node which consider not only the attributes of the node but also the

attributes and labels of its partially labeled neighborhood. The Collective Classification

task is a classical Semi-Supervised Learning (SSL) problem where node representations

are obtained by leveraging the information from large amounts of unlabeled nodes in

addition to the information from the labeled nodes. It is often the case that a node is

not only influenced by its immediate neighbors but also by it is higher order neighbors,

multiple hops away which may be both labeled and unlabeled.

Traditionally handcrafted features were widely used to capture relational informa-

tion. Popular methods used mix of count statistics of label distribution (Neville and

2

Jensen (2003); Lu and Getoor (2003)), relational properties of nodes like degree, cen-

trality scores (Gallagher and Eliassi-Rad (2010)), and attribute summaries of immediate

neighborhood, etc. Limited by manual engineering, these traditional methods only used

raw features built from information associated with immediate (first order or one hop)

neighbors.

The recent surge in deep learning has shown promising results in extracting impor-

tant semantic features and learning good representations for many machine learning

tasks. Deep learning models for such relational node classification tasks can be broadly

categorized into models that either learn node representation with structural regular-

ization (Perozzi et al., 2014; Wang et al., 2016) or those that ignore explicit structural

regularization and learn to aggregate neighbors’ information (Hamilton et al., 2017;

Moore and Neville, 2017; Kipf and Welling, 2016). The former is limited to work only

in networks that exhibit high homophily, as they enforce the representation of a node

and its neighbor to be similar. The latter methods, on the other hand, do no make such

assumptions.

Initial works of Frasconi et al. (1998) on relational feature extraction with neural

nets primarily relied on recursive neural nets to process the graph data, limited by their

ability to deal only with directed ordered acyclic graphs, Scarselli et al. (2009) and

Gori et al. (2005) introduced Graph Neural Networks (GNNs) which used recursive

neural nets to propagate information in any general graph iteratively. However, these

GNNs were limited to problems where the entire graph can fit into memory. To extend

the work to sequence generation problems on graphs, Li et al. (2015) adapted Graph

Recurrent Units (GRUs) (Cho et al., 2014) in the propagation step. Recently, Moore

and Neville (2017) proposed a Long Short Term Memory (LSTM) (Hochreiter and

Schmidhuber, 1997) based sequence embedding model for node classification but it

required randomly ordering first hop neighbors’ information, thus essentially discarded

the topological structure.

To directly deal with the graph’s topological structure, Bruna et al. (2013) de-

fined convolutional operations in the spectral domain for graph classification tasks, but

required computationally expensive eigendecomposition of the graph Laplacian. To

reduce this requirement, Defferrard et al. (2016) approximated the higher order rela-

tional feature computation with first order Chebyshev polynomials defined on the graph

3

Laplacian. Graph Convolutional Networks (GCNs) (Kipf and Welling, 2016) adapted

them to Semi-Supervised node level classification tasks. GCNs simplified Chebyshev

Nets by recursively convolving one-hop neighborhood information with a symmetric

graph Laplacian. Recently, Hamilton et al. (2017) proposed a generic framework called

GraphSAGE with multiple neighborhood aggregator functions. GraphSAGE works

with a partial (fixed number) neighborhood of nodes to scale to large graphs. GCN and

GraphSAGE are the current state-of-the-art approaches for transductive and inductive

node classification tasks in graphs with node features. These end-to-end differentiable

methods provide impressive results besides being efficient regarding memory and com-

putational requirements.

1.3 Contributions of this Thesis

In this thesis, we argue that though Graph propagation based Neural Networks such as

the GCNs and GraphSAGE family are powerful and provide impressive state-of-the-art

results, they still cannot efficiently obtain information from multiple hops. Multiple

issues restrain these networks from extracting relevant multi-hop neighborhood infor-

mation for the end tasks. The primary contribution of this thesis lies in identifying

and analyzing these issues along with providing solutions to alleviate these issues. The

contributions are presented in the following two works.

1.3.1 Higher Order Propagation Framework

Our main contributions presented in this work are:

• A modular graph kernel that generalizes many existing methods. Through this, we
discuss a hitherto unobserved phenomenon which we refer to as Node Information
Morphing (NIM). We discuss its implications on the limitations of existing methods
and then discuss a novel family of kernels called the Node Information Preserving
(NIP) kernels to address these limitations.

• A hybrid Semi-Supervised Learning (SSL) framework for higher order propagation
that couples differentiable graph kernels with an iterative learning and inference pro-
cedure to aggregate neighborhood information over farther hops. This allows differ-
entiable kernels to exploit label information and further overcome excessive memory
constraints imposed by multi-hop information aggregation.

• An extensive experimental study on eleven datasets from different domains. We
demonstrate the NIM issue and show that the proposed iterative NIP model is robust
and overall outperforms existing models.

4

1.3.2 Fusion Graph Convolutional Networks

Our main contributions presented in this work are:

• We point out that current state-of-the-art graph convolutional nets lack the repre-
sentation capacity to regulate different neighborhood information independently.

• We also show that these models capture K-hop neighborhood information by a
Kth order binomial. We take advantage of this to build a binomials basis for the
K-hop neighborhood space with outputs from different graph layers correspond-
ing to different hop. With the binomial basis, we define a simple linear fusion
layer that can capture any required combination of hops for the end task.

• We propose F-GCN, a simple extension to GCNs with the proposed fusion layer.
We show that the proposed model outperforms the state-of-the-art models on nine
out ten datasets while being highly competitive on the other.

1.4 Outline of the thesis

The remainder of this thesis is organized as follows. Chapter 2 provides the neces-

sary background on graph-based Semi-Supervised learning with Laplacian regularizers

and also provides brief literature on the current state-of-the-art neural network models

for Semi-Supervised Collective Classification. In Chapter 3, we discuss the proposed

Higher Order Propagation Framework, HOPF which provides a generic graph kernel

with an iterative learning framework. We study a hitherto unobserved issue of Node

Information Morphing with the aid of the generic kernel. The iterative learning frame-

work enables scaling of Graph Convolutional Networks (GCNs) beyond their memory

limitations. This chapter is concluded with an extensive experimental study on eleven

datasets from numerous domains. In Chapter 4, we discuss the work on Fusion Graph

Convolutional Networks, F-GCNs. We analyze the limitations on the representation

capacity of GCNs to regulate information from multiple hops independently. We show

that GCNs are differentiable graph kernels with binomial basis. Then, we leverage this

observation to propose a simple fusion component that empowers existing GCNs repre-

sentation capacity to capture efficient multi-hop information. This chapter is concluded

with an extensive experimental study. Finally, in Chapter 5 we briefly summarize the

implications of the contributions and also discuss possible future works.

5

CHAPTER 2

Background and Related works

Network data have inherent relational structure among the nodes of a graph. The re-

lational structure (edges) among nodes might encode additional latent correlated infor-

mation which might be useful. For example, social networks exhibit correlations such

as homophily (individual characteristics affect social connections), influence (social

connections influence individual characteristics) and community (social connections

determine the social group). Such relational information is deemed useful if it gives

additional evidence that might improve the belief obtained from using only the node

features. Such benefit might arise when the node features are not sufficient or robust as

a stand-alone information for the end task.

Representations for the graph are learned at node or edge or graph level depending

on the end task. Herein, we focus on learning representations at node (vertex) level

for the task of classifying nodes. Classifying nodes in Information networks such as

social networks, citation networks, protein interaction networks, etc. involve character-

izing the nodes’ information along with its neighborhood information concerning their

relational structure, attributes and their complex non-linear correlation with the labels.

In this section, we start by defining a Collective Classification (CC) dataset and other

notations commonly used by different CC models in this work. Next, we introduce the

CC task as a graph-based Semi-Supervised Learning (SSL) problem. Then, we discuss

how spectral kernels, in general, are used as regularizers and feature extracting filters

to preserve and leverage relational information. Having reviewed the background on

learning with spectral kernels, we move on to discuss the current state-of-the-art spectral

kernels based CC models, the Graph Convolutional Networks (GCNs) and their relation

to Weisfeiler-Lehman (WL) algorithm. Following GCNs, we explain GraphSAGE, a

GCN variant with more generic relational filters. Then, we also discuss the classical

Iterative Collective Classification algorithm, which we later leverage in our proposed

work to make GCNs more scalable and powerful feature extractors.

Additionally, in the end, we also provide details on our other related work for

leaning semi-supervised embeddings for non-attributed graphs, ’Semi-Supervised Non-

Negative Matrix Factorization for Clusterable embeddings’ (SS-NMF). This work was

jointly done in Collaboration with Anasua Mitra, a PhD student at IIT Guwahati. We

report the entire study of this work here in the related section as I have significantly

contributed to this project and that the contributions of this work will appear in her

thesis.

2.1 Notations

Let G = (V,E) denote a graph with a set of vertices, V , and edges, E ⊆ V × V . Let

|V | = n. The set E is represented by an adjacency matrix A ∈ Rn×n and let D ∈ Rn×n

denote the diagonal degree matrix defined as Dii =
∑

j Ai,j .

A Collective Classification dataset defined on graph G comprises of a set of labeled

nodes, S, a set of unlabeled nodes, U with U = V − S, a feature matrix: X ∈ Rn×f

and a label matrix: Y ∈ {0, 1}|S|×l, where f and l denote the number of features and

labels, respecetively. Let Ŷ ∈ Rn×l denote the predicted label matrix.

In this work, neural networks defined over K-hop neighborhoods have K aggre-

gation or convolution layers with d dimensions each and whose outputs are denoted

by h1, . . . , hK . We denote the learnable weights associated with k-th layer as W φ
k and

Wψ
k ∈ Rd×d. The weights of the input layer (W φ

1 , Wψ
1) and output layer, WL are in

Rf×d and Rd×l respectively. Iterative inference steps are indexed by t ∈ (1, T). Let σk

be the activation function of the kth layer in the neural network.

2.2 Graph-based Semi-Supervised learning

Semi-Supervised Learning (SSL) leverages unlabeled data to achieve improved gener-

alization on supervised tasks. Typically, it is useful when the supervision is limited. In

this work, we focus on the standard SSL setup where the supervision is provided in the

form of target labels for data instances.

Semi-Supervised Learning aims at improving the performance of the supervised

learning task by obtaining a better estimate of the underlying data distribution with the

8

available additional unlabeled data. Similar to the necessary assumptions that are made

for supervised learning such as continuity, independent and identically distributed data

(IID), etc., there are necessary assumptions required for SSL (Chapelle et al. (2009))

to work. It is vital to ensure that these assumptions, specifically those on the data,

are satisfied when coupled with models that jointly learn representations for data. The

popular graph-based SSL paradigm that is built on the manifold assumption preserves

the geometry of data especially under the change of representation.

Graph-based SSL methods model the underlying data manifold as a graph and uti-

lize it to enforce smoothness on a target space. The graph can either be computed from

the data or given apriori. Both labeled and unlabeled data are represented as nodes, and

the edges denote a notion of similarity. When the graph is not given apriori, the weights

on the edges are computed with some similarity kernel on the input space. The required

smoothness properties are encoded with an appropriate spectral (graph) kernel (Smola

and Kondor (2003)).

2.3 Spectral Kernels

The different graph-based learning approaches for the Collective Classification task can

be broadly classified into two paradigms based on the use of spectral kernels:

• Graph-based regularization with kernels as similarity functions.

• Graph feature extraction with kernels as filters.

In a node classification task, the kernels operate in the vertex domain, and hence

the regularization and feature extraction are over the neighborhood of vertices. Reg-

ularization based methods enforce nodes be similar to their neighbors in the label or

embedding space, and feature extraction methods aggregate neighborhood information

and combine it with the node features.

2.3.1 Regularization with Spectral kernels

LetL denote the normalized symmetric Laplacian operator, whereL = I−D−1/2AD−1/2

with I being the identity matrix. The Laplacian operators defined on undirected graphs

9

are symmetric matrices. This property of Laplacian matrices is the foundation for the

spectral theory. As graph Laplacian L is a real symmetric matrix, it can be diagonalized

to obtain orthonormal eigenvectors U with associated real and non-negative eigenvalues

Λ. The multiplicity of eigenvalue 0, corresponds to the number of connected compo-

nents in the graph. The eigenvectors corresponding to smaller eigenvalues of L encode

smooth variations for connected nodes i.e |Ui(m)− Ui(n)| is small.

The Laplacian operator on a function of graph signal, f = f(X) penalizes the

change between adjacent vertices as described in 2.1. Following from the definition of

a Positive Semi-Definite (PSD) matrix, the graph Laplacian operator can be used as a

semi-norm on signals making it a useful tool for regularization.

< f, Lf >= fTLf =
∑

(i,j)∈E

||fi − fj||2 ≥ 0 (2.1)

We can define a class of regularization functionals, r(θ) on the graph by parameter-

izing a function over the the Laplacian which would be a function over the eigen values

as given in Eqn: 2.3. The choice of function should be driven with the thought that

we need to penalize Vi which has large Λi, hence the rΛ should monotonically increase

with Λ.

L = UTΛU (2.2)

r(L) = r(Λ) = UT r(Λ)U (2.3)

The most common choices of graph regularizers, r are the plain Laplacian 2.4 and

the regularized Laplacian 2.5 with σ=1 followed by 2.6.

r(Λ) = IΛ (2.4)

r(Λ) = (I + σ2Λ) (2.5)

r(Λ) = exp(σ2/2L) (2.6)

As long as r(L) is a PSD matrix, we can define a Reproducing Hilbert space with

kernel, κ = r(L)−1. For more on graph regularization and kernels, refer (Smola and

Kondor (2003)).

10

Laplacian smoothing

These Regularization kernels are used to encode smoothening priors based on the re-

lational structure of G. Laplacian regularizers have been extensively used for semi-

supervised node classification. Below, we provide a functional definition of Laplacian

regularizer parameterized by the graph of consideration and the space to be smoothed.

LS(P, f(X)) =
∑

(i,j)∈E

‖f(Xi)− f(Xj)‖2 = fT∆(P)f (2.7)

Let ∆ denote the graph Laplace operator. LetLS(P, f(X)) denote Laplacian Smooth-

ing (LS) on the target space, f(X) with L = ∆(P), where P ∈ Rn∗n is some defined

proximity matrix. As mentioned earlier, Laplacian smoothing can be applied on the la-

bel space f(X) = L, data projections Xorf(X) or on a latent cluster space, f(X) = C

as proposed in this work.

Loss = LossSupervised + λLS(P, f(X)) (2.8)

The regularization term is explicitly added to learning objective and is optimized

along with the supervised loss as in 2.8. The λ in the equation is a trade-off parameter

which weighs neighborhood similarity with the node features. λ is chosen by cross-

validation to determine the importance of node features. Laplacian SVM (Belkin et al.

(2006)) is a popular model which couples a Laplacian regularizer to the Hinge loss

and one can also view Label propagation (Zhu and Ghahramani (2002)) as Laplacian

smoothening on the label space with a k-nearest neighbor classifier.

2.3.2 Convolutions with Spectral kernels

The spectral of the Laplacian help us form analogous theory to Fourier transforms lead-

ing to Graph Fourier Transforms enabling us to model filters which can be used for

convolution operation in the original graph space as in Eqn: 2.9. Unlike kernels for reg-

ularization which focused on monotonic scaling of the eigen values, kernels for filtering

11

are chosen to parameterize the combination of the laplacian basis.

gθ ∗ x = Ugθ(Λ)UTx (2.9)

The non-parametric kernels as in Eqn: 2.10 are potent alternatives to parametric

filters as they are not biased to any specific family of spectral transformations and also

have higher degrees of freedom of the order of number of nodes in comparison to pa-

rameterized kernels with a fixed, K filters . However, they are less desirable as the

number of parameters grows with growing vertex set, and also these filters (parameters)

are not localized.

The popular alternative is the polynomial filter given in Eqn: 2.11. The polynomial

filters of the K-th order are exactly K-localized. However, extracting features with

these polynomial filters are compute intensive owing to the dense-dense multiplication

of the signal, x and the basis, U besides the running time complexity of the eigen

decomposition O(n3).

Non-parametric filter: gθ(Λ) = diag(θ) (2.10)

Polynomial filter gθ(Λ) =
K∑
k=0

θkΛ
k (2.11)

In order to overcome this computationally expensive step, we can resort to approx-

imate computations of polynomials such as that of Chebyshev polynomial approxima-

tions. A truncated series of Chebyshev polynomials, which can be defined recursively

in terms of L (Eqn: 2.12) is used to approximate the Polynomial filter i.e we intend to

approximate gθ(L) directly over gθ(Λ) as given in Eqn: 2.12 as seen in Eqn: 2.13. This

avoids the need to compute the full set of eigenvectors and more importantly, we can

now leverage sparse-dense multiplications to compute Lx as L is a sparse matrix. This

reduced the complexity to the O(K|E|)

T0(x) = x

T1(x) = L−x

Tk(x) = 2L−Tk−1(x)− Tk−2(x)

(2.12)

12

∑
k=0

θkΛ
k ≈

K∑
k=0

θkTk(L−)x

where L− =
2

λmax
L− IN

(2.13)

2.3.3 Chebyshev Neural Network

The Chebyshev neural network of (Defferrard et al. (2016)) is built by stacking multi-

ple K th order Chebyshev filters mentioned in Eqn: 2.13. Chebyshev Neural networks

defined in Eqn: 2.14 was defined for extracting graph level features to make graph

classification. Graph Coarsening layers are interleaved between Chebyshev layers to

coarsen the graph iteratively, and graph pooling layer was defined to summarize infor-

mation from all the nodes of the graph at every layer. All Chebyshev layers have ReLU

as the activation function, i.e σk = ReLU ∀k ∈ [1, K]. The features from the final layer

are sent through an additional graph classification layer.

h0 = X

hk+1 = σk(gθ(L
K)hk)

= σk(
K∑
k=0

θkTk(L−)hk)

(2.14)

2.4 Graph Convolutional Networks

(Kipf and Welling (2016)) introduced Graph Convolutional Networks (GCNs) as stacked

approximations of first-order Chebyshev filters. They are also multi-layer convolutional

neural network where the convolutions are defined on a graph structure for the problem

of Semi-Supervised node classification. The significant improvement over Chebyshev

Neural Networks is that, in GCNs, filtering happens at every step of the propagation

thereby allowing only relevant information to flow across neighborhoods. This also

enables GCNs to learn complex non-linear feature basis.

The conventional two-layer GCNs which captures information up to the 2nd hop

neighborhood of a node can be reformulated to capture information up to any arbitrary

13

hop, K as given below in Eqn: 2.15.

h0 = X

hk = σk(L̂hk−1Wk), ∀ k ∈ [1, K − 1].

Y = σK(L̂hK−1WL)

(2.15)

GCNs were used for multi-class classification task with Rectified Linear Unit (ReLU)

as the activation function, i.e σk = ReLU ∀k ∈ [1, K − 1] and a softmax label layer,

σK = softmax. We can rewrite the GCN model in terms of (K − 1)th hop node and

neighbor features as below by factoring L̂.

hk = σk((D̂
− 1

2 ID̂−
1
2 + D̂−

1
2AD̂−

1
2)hk−1Wk)

= σk(SUM(D̂−1hk−1, D̂
− 1

2AD̂−
1
2hk−1)Wk)

(2.16)

2.4.1 Relation to Weisfeiler-Lehman (WL) algorithm

GCNs can be viewed as continuous approximations of the node features obtained with

1-dim Weisfeiler-Lehman algorithm (Kipf and Welling (2016); Hamilton et al. (2017)).

The Weisfeiler-Lehman (WL) algorithm defines a vertex color (label) refinement scheme

that is used to obtain graph signatures to perform graph-isomorphism tests. The WL al-

gorithm starts with an initial coloring (discrete features), for all nodes and uses a hash-

ing function that aggregates neighbors’ colors and produces a new color. This step is

repeated multiple times until we get a stable coloring. Eqn: 2.17 computes the color of

a node, i in kth iteration based on a hashing of neighbors’ colors from the k − 1th step.

colork[i] = hash(
∑

(i,j)∈E

colork−1[j]) (2.17)

The WL-algorithm, at every step, k applies a local function to compute k-hop signa-

tures/representations of nodes. At every step, the information from a node gets propa-

gated further away as shown in Figure: 2.1. Figure: 2.1 shows information at the nodes

at different step, with leftmost being the initial 0th step and the rightmost being 2nd step.

At every step, each node aggregates neighbors symbols and takes a union of it.

GCN models are parameterized differentiable extensions of WL algorithm based

14

Figure 2.1: Information Propagation in 1-d Weisfieler Lehman algorithm

graph kernels, where the hashing function is replaced with a non-linear function, and

the simple union aggregation function is replaced with differentiable functions such as

mean with GCNs.

2.5 GraphSAGE

Graph SAmple and AggreGatE model (GraphSAGE) proposed in (Hamilton et al. (2017))

consists of 3 models with different differentiable neighborhood aggregator functions.

GraphSAGE models were defined for the multi-label Semi-Supervised inductive learn-

ing task, i.e generalizing to unseen nodes during training. Let the functionAggregate()

abstractly denote the different aggregator functions in GraphSAGE, specifically Aggregate ∈

{mean, max pooling, LSTM} and we will refer to these models as GS-MEAN, GS-

MAX and GS-LSTM, respectively. Similar to GCN, GraphSAGE models also re-

cursively combine neighborhood information at each layer of the Neural Network.

GraphSAGE has an additional label layer unlike GCN, i. e., hL = hK+1. Hence,

σk = ReLU ∀k ∈ [1, K] and σL = sigmoid. Here, the weights Wk̂ ∈ R2d×d.

h0 = X

hk = σk(CONCAT(hk−1, Aggregate(hk−1, A)Wk̂)

∀k ∈ [1, K]

Y = σK+1(hKWL)

(2.18)

GraphSAGE models, unlike GCN, are defined to work with partial neighborhood in-

formation. For each node, these models randomly sample and use only a subset of

neighbors from different hops. This choice to work with partial neighborhood informa-

15

tion allows them to scale to large graphs but restricts them from capturing the complete

neighborhood information. Rather than viewing it as a choice it can also be seen as

restriction imposed by the use of Max Pool and LSTM aggregator functions which re-

quire fixed input lengths to compute efficiently. Hence, GraphSAGE constraints the

neighborhood subgraph of a node to contain a fixed number of neighbors at each hop.

2.6 Iterative Collective classification Algorithm

Iterative Collective classification Algorithm (ICA) (Sen P et al. (2008)), is more of

a framework that can incorporate relational information into any existing classifiers.

ICA (Neville and Jensen (2000)) was the popular Collective Classification model in

the last decade because of its generality and also primarily because it can handle non-

homophilous relational information too. ICA explicitly tries to capture the correlation

of a node’s features with its neighbor’s labels and hence does not make any assumptions

on the label smoothness among the neighborhood. There are three major components

of ICA are (i) neighborhood summaries, (ii) relational classifier and (iii) iterative infer-

ence. The three components are explained below:

• Neighborhood summaries: ICA leverages relational information of a node in
terms of neighborhood summaries. Conventionally, some label statistics over
the neighbors’ labels are used. Few popular ones are the label sum, avg, min and
max of the label counts. Since the majority of nodes are unlabeled in the SSL
setup, a pre-requisite for ICA is to bootstrap the labels of the unlabeled nodes. A
common and effective strategy is to bootstrap the labels with predictions from a
non-relational classifier based on the attributes of the nodes.

• Relational classifier: The relational classifier of ICA can be any standard clas-
sifiers. ICA concatenates the obtained neighborhood summaries of nodes with
their nodes’ features to obtain a new relational node features. Then, this new
node feature is used to learn a classifier. This classifier can now make predictions
leveraging the relational features.

• Iterative inference: Since the labels of the unlabeled nodes are bootstrapped and
are not the true labels. The neighborhood summaries based on these obtained
estimates are not completely reliable. Hence, it is important to improve these
estimates in order to make the label predictions better. The iterative inference
component of ICA helps in achieving this by iteratively updating the label es-
timates. After learning a relational classifier with the bootstrapped labels for
unlabeled nodes, ICA iteratively makes label estimates with the relational classi-
fier based on the current label summaries of nodes. At every iteration, the label
summaries are updated based on the current label estimates. In short, the ICA
framework makes label predictions based on label summaries with the learned

16

relational classifier and then feeds back a new label summary computed with the
recent label predictions made. The iterative refinement of label estimates are done
till some fixed number of steps or till some convergence criteria is satisfied.

Better label estimates are obtained with ICA not only because of better neighbor-

hood summaries but also because of label information propagation. With every itera-

tion, a node’s label estimate is propagated and used to make label update for another

similar to 1-dim WL algorithm discussed in Fig: 2.1. Here, the relational classifier by

itself is a local first-order classifier which can make label predictions based on the node

and information from its immediate neighbors. The significant difference with ICA and

recent neural network based models for graphs is that ICA cannot learn and end-end

differentiable multi-hop representation for the end tasks. The learning happens before

the information is propagated beyond one-hop. Moreover, another significant difference

is the neural network models do not leverage label information. There is some variant

of ICA which also exploits neighbor’s attribute information but again not in an entirely

end-end differentiable manner.

2.7 Semi-Supervised Non-Negative Matrix Factorization

for clusterable graph embeddings (SS-NMF)

This work1 focuses on learning Semi-Supervised node embeddings for non-attributed

graphs under the Non-Negative Matrix Factorization (NMF) framework. The model

proposed in this work, Semi-Supervised NMF (SS-NMF), is a novel node embedding

model that learns Semi-Supervised cluster invariant representations. The learned node

embeddings are densely clustered into regions of same or similar labels as can be seen

with the t-Distributed Stochastic Neighbor Embedding (t-SNE) plots presented in Fig-

ure: 2.2. These clusterable node representations provide not only superior visualizations

but also improved node classification results.

1This work was done in collaboration with Anasua Mitra, Ph.D. scholar at IIT Gauhati when she
interned in R.I.S.E lab, IIT Madras. The contributions of the work will go into her thesis.

17

Figure 2.2: t-SNE Visualization of Embeddings on Citeseer Dataset for Unsupervised
& Semi-Supervised Methods

(a) MFDW (b) MNMF (c) GEMSEC (d) COME (e) MFDW+Y (f) MNMF+Y (g) MMDW (h) SS-NMF

2.7.1 Notations for SS-NMF

Hence, we provide additional notations and also revise existing notations specific to this

work.

Let the true label matrix, Y ∈ 0, 1|S|∗l be expanded with zero rows to become

Y ∈ Rn∗q. Let, D(A)n×n be the diagonal degree matrix of the adjacency matrix A

defined as dii =
∑

j ai,j. Thus, the unnormalized Laplacian operator on the graph G can

be defined as ∆(A)N×N = D(A) − A. Let, W ∈ Rn∗n refer to a penalty matrix that

penalizes reconstruction of a matrix according to the value defined.

2.7.2 SS-NMF:Semi-Supervised NMF model

Here we incrementally build the proposed model step by step.

Encode local neighborhood invariance in node embeddings: The basic component

of the model learns locally invariant node representations, i.e., nodes which are con-

nected have similar representations. We obtain locally invariant representations by fac-

torizing a proximity matrix, P ∈ Rn∗n that encodes the similarity between the nodes.

The model is similar to Matrix Factorized DeepWalk (MFDW) model with Pointwise

Mutual Information matrix as the proximity matrix (Tu et al. (2016)) with the differ-

ence that herein the Non-negative Matrix Factorization (NMF) framework is used. NMF

models are well suited as the proximity matrix is positive. Closely, following (Tu et al.

(2016)), we only consider the first order and second order average transition probability

between a pair of nodes to compute the P . Recent papers such as (Levy and Goldberg

(2014)), (Yang et al. (2015)) and (Qiu et al. (2017)) suggest that DeepWalk is equiva-

lent to factorizing Pointwise Mutual Information matrix that represents vertex-neighbor

transition probability.

18

Figure 2.3: Unsupervised node embedding

We factorize the proximity matrix, P into two non-negative basis matrices - the

node representation matrix U ∈ Rm×n and the context neighbourhood representation

matrix M ∈ Rm×n as given below and depicted in Figure: 2.3,

Onetwork = min
M,U
‖P − UTM‖2

: M ≥ 0, U ≥ 0 (2.19)

Encode supervision knowledge: In order to learn the Semi-Supervised representa-

tions, we need to jointly factorize the label matrix, Y along with S as shown in Figure:

2.4. We define the label matrix factorization term in Eqn: 2.20. Where W ∈ Rq×n

is a weight penalty matrix that zeros out all the label information of test instances.

Specifically, Wi is equal to 0 if the corresponding Yi is unknown and 1 otherwise. �

is Hadamard or element-wise multiplication. Q ∈ Rq×m is the label basis matrix. The

supervision component is defined as follows:

Figure 2.4: Semi-Supervised node embedding

Olabel = min
Q,U
‖W � (Y −QU)‖2 : Q ≥ 0, U ≥ 0 (2.20)

Encode local neighborhood invariance in label space: The model also includes

the classic label smoothing Laplacian regularizer, LS(S,QU). Label smoothing regu-

larizer constraints the connected nodes to have similar labels, whereQU is the predicted

19

(reconstructed) label matrix as defined in the previous component.

OLL = LS(S,QU) = Tr{(QU)∆(S)(QU)T} (2.21)

Encode Semi-Supervised cluster invariance: Here, we define our proposed novel

component that allows for learning cluster invariant node representations. Unlike mod-

els which enforce explicit Laplacian regularization on the embedding space or label

space, we enforce constraints on an abstract space, clusters. In essence, it allows

the model to learn clusterable representations such that there is high label smoothness

within the cluster. This component primarily comprises two components:

• Learn cluster assignment via orthogonality constraint: Let, H ∈ Rk×n rep-
resents the binary cluster membership indicator matrix defined for k number of
clusters. We obtain H by projecting node embeddings, U on cluster basis C, as
H = CU . We can restrict the clusters to have different assignments and have
less overlap with each other via block diagonal constraints. Here we resort to
blocks of size one by enforcing the orthogonal constraints, which encourages ev-
ery cluster to be different from each other. This soft-clustering criteria is enforced
by Trace(HHT) = N . We relax this constraint by setting HHT = I , similar
to (Wang et al. (2017)). The regularization weight for this is kept as a constant
value 109.

• Encode global context with local cluster invariance: We enforce this constraint
by applying Laplacian regularization on H with label similarity based proximity
matrix, PY . We define the label similarity network defined over train data as
PY = (W � Y)T (W � Y) ∈ Rn×n, where ∆(PY) = D(PY)− PY is the unnor-
malized Laplacian operator on PY . With ∆(PY), we define the cluster smoothing
Laplacian regularizer, LS(PY , H).

LS(PY , H) = Tr((H)∆(PY)(H)T) (2.22)

The label based similarity matrix introduces new edges between nodes of similar
labels which may be far away or not even connected in the original network, P .
This allows clusters to enforce a global context.

Cluster invariant representations that enforce similar cluster assignments to nodes of

same labels are obtained with the objective in Eqn: 2.23. There is a circular enforcement

between H and U , i.e., U learns from H , H implicitly learns from U and H explicitly

learns from the cluster regularization term & non-overlapping/ orthogonality constraint.

Therefore,H pushes two nodes with the same labels and similar neighborhood structure

20

together into the same cluster and ensures that these two have similar representations.

Lgroup = min
H,C,U≥0

β‖H − CU‖2 + φLS(PY , H) + ζ‖HHT − I‖2
(2.23)

SS-NMF Model In SS-NMF, the node representations, U are learned by jointly

factorizing the local neighborhood proximity matrix S, label matrix Y , inferred cluster

assignment matrixH and are indirectly influenced by smoothing on the label and cluster

space. The joint objective is given below in Figure: 2.5 and in Eqn: 2.24.

O = α(Onetwork) + θ(Olabel) + δ(OLL) +Ogroup + λ(L2reg) (2.24)

α, β, θ, ζ, φ, δ, λ are hyper-parameters controlling the importance of respective terms in

the equation. Since the joint non-negative constrained objective is not convex, we can

iteratively solve the convex sub-problem for each of the factors M,U,C,Q, & H as

with most multiplicative NMF approaches.

Figure 2.5: SS-NMF: Semi-Supervised NMF

2.7.3 Optimization

Let ψ1, ψ2, ψ3, ψ4, ψ5 be the Lagrange multipliers for the non-negative constraints on

factor matrices M,U,C,Q,H respectively. SS-NMF’s loss function in Eqn: 2.24 can

be expanded and rewritten with Lagrange multipliers for non-negative constraints as

21

follows:

L = αTr[PP T − 2PMTU + UTMMTU]

+ βTr[HHT − 2HUTCT + CUUTCT]

+ θTr[W � {Y Y T − 2Y UTQT +QUUTQT}]

+ ζTr[HHTHHT − 2HHT + I] + φTr{HL(PY)HT}

+ δTr{(QU)L(P)(QU)T}

+ λTr(MMT +QQT + CCT + UUT +HHT)

+ Tr[ψ1M
T + ψ2U

T + ψ3C
T + ψ4Q

T + ψ5H
T]

The Karush−KuhnTucker (KKT) conditions for the non-negativity of the different

terms are: ψ1abmab = 0, ψ2abuab = 0, ψ3cacca = 0, ψ4daqda = 0 and ψ5cbhcb = 0,

where M = [mab], U = [uab], C = [cca], Q = [qda], H = [hcb] s.t. a, b, c, d are the

respective row & column indices. Following the KKT conditions, we can obtain the

partial derivatives for each of the factors.

∂L
∂M

= −2αUS + 2αUUTM + 2λM + ψ1

∂L
∂C

= −2βHUT + 2βCUUT + 2λC + ψ3

∂L
∂Q

= −2θ(W � Y)UT − 2δ(QUS)UT + 2θ(W �QU)UT

+ 2δ(QUD(S))UT + 2λQ+ ψ4

∂L
∂U

= −2αMST − 2βCTH − 2θQT (W � Y)− 2δ(QTQU)S + 2αMMTU

+ 2βCTCU + 2θQT (W �QU) + 2δ(QTQU)D(S) + 2λU + ψ2

∂L
∂H

= 2βH − 2βCU + 4ζHHTH − 4ζH + 2λH + 2φHD(E)− 2φHE + ψ5

From the partial derivates, we can derive the following multiplicative update rule

for the factors.

M = M � (
αUP

αUUTM + λM
) (2.25)

C = C � (
βHUT

βCUUT + λC
) (2.26)

22

Q = Q� (
θ(W � Y)UT + δ(QUP)UT

θ(W �QU)UT + δ(QUD(P))UT + λQ
) (2.27)

U = U � (
αMP T + βCTH + θQT (W � Y) + δ(QTQU)P

αMMTU + βCTCU + θQT (W �QU) + δ(QTQU)D(P) + λU
)

(2.28)

H = H � (
βCU + 2ζH + φHPY

βH + 2ζHHTH + φHD + λH
)1/4 (2.29)

2.7.4 Experiments

In this section, we evaluate and analyze the proposed model, SS-NMF against the

state-of-the-art models and numerous proposed adaptions of existing and new Semi-

Supervised components for node classification. Additionally, we also demonstrate the

superiority of the discriminative capacity of the learned embeddings by evaluating clus-

ters against ground truth with Normalized Mutual Information (NMI) and t-SNE plots.

Further, we also provide convergence plots and parameter sensitivity analysis.

Datasets

Description of the datasets used are provided below with summary statistics tabulated

in Table: 2.1.

Table 2.1: Dataset statistics

V : Nodes, E: Edges, Y : Labels, ML: Multi-label dataset
D:Directed, W:Weighted, T:True, F:False

Dataset |V | |E| |Y | is ML? D | W Type

Washington 230 596 5 F F | T WWW
Wisconsin 265 724 5 F F | T WWW
Texas 186 464 5 F F | T WWW
Cornell 195 478 5 F F | T WWW
Wiki 2, 405 17, 981 19 F T | F Citation
Cora 2, 708 5, 278 7 F T | F Citation
Citeseer 3, 312 4, 732 6 F T | F Citation
Pubmed 19, 717 44, 338 3 F F | F Citation
PPI 3, 890 76, 584 50 T F | F Biological

23

WWW network: WebKB (Chakrabarti et al. (1998)) consists of four small web

networks collected from four different universities - Washington, Wisconsin, Texas,

and Cornell. These networks are a collection of web pages modeled as nodes with their

hyperlinks forming the edges. The task here is to predict the type of webpage.

Citation networks: In the following citation networks, nodes are the research papers

and edges denote a citation. (Cora Craven et al. (1998)), Citeseer (McCallum et al.

(2000)), Wiki (Sen P et al. (2008)) and Pubmed are four bibliographic datasets where

the task is to predict the research area of the papers.

Biological network: PPI (Stark et al. (2006)) is a Homo Sapiens’ Protein-Protein In-

teraction (PPI) network where the objective is to predict the labels for nodes from the

hallmark gene sets.

Baselines

The state of the art methods for Semi-Supervised classification on non-attributed graphs

is limited only to MaxMargin-DeepWalk (MMDW) (Tu et al. (2016)) and Planetoid

(Yang et al. (2016a)). Besides, we also introduce two more Semi-Supervised baselines

built on top of the unsupervised community preserving embedding model (MNMF)

(Wang et al. (2017)) and the Non-negative Matrix Factorization version of DeepWalk

(NMF:P) (Tu et al. (2016)). They are MNMF+Y and NMF:P+Y respectively in which

the original objectives are jointly factorized with label matrix (Y) as in Eqn: 2.20. The

nomenclature for NMF based models will indicate that they are NMF along with the

matrices being factored. For example, NMF:P+Y indicates that the matrix factorizes

proximity matrix, P and label matrix Y .

For the sake of reference, we have also included the results of the original ran-

dom walk sampling based DeepWalk (DW) (Perozzi et al. (2014)). Apart from MNMF

(Wang et al. (2017)), we have also included few recent unsupervised community/cluster

enhanced node representation learning models, viz, Community Embedding ComE

(Cavallari et al. (2017)) and Graph Embedding with Self Clustering GEMSEC (Rozem-

berczki et al. (2018)) as baselines. Planetoid was defined for multi-class classification

problem with stratified labeled train-set (which can be unrealistic). We empirically ob-

served Planetoid-G (Planetoid for non-attributed graphs) perform poorly in comparison

to other baselines where the labeled set is randomly drawn, and it is not directly ex-

24

tensible for the multi-label dataset (PPI). Hence, we do not report results for Planetoid

here.

These above-discussed models will be the standard baselines that will be compared

against SSNMF. Additional models used for experiments will be described in their re-

spective sections.

Experiment Setup

The Semi-Supervised Learning experiment is set up with 50% labeled data, and the

data is drawn randomly to create a 5 fold cross validation setup. All classification and

clustering results reported here are an average over these five sets. For all the competing

algorithms we set dimensions of the node embeddings as 128. We also extensively

searched for optimal hyperparameter values for all the competing methods using 20%

of the training data as a validation set.

Metrics: We report classification performance with Micro-F1 scores. Additionally,

we define two aggregate metrics to measure the overall performance of models across

datasets viz: Rank and Shortfall. Rank of a model is defined as the average position of

the model when the results are ordered in descending order in each dataset and Shortfall

of the model is defined as the average normalized difference from the best performing

model in each dataset, see section: 3.9.1 for more details. The lower the rank and short-

fall, the better is the performance of the model. The proposed models are the winner

in all the experiments. However, we resort to these two aggregate scores to measure

the consistency of models across datasets. We also provide statistical significance with

Wilcoxon signed rank test, the established test for comparing two models on multiple

datasets.

classifier: For all models, we learn an external Logistic Regression classifier to make

label predictions from the models’ learned node representations. Though we can obtain

label predictions internally for the supervised models by reconstructing the label ma-

trix, we found that using an external classifier further improves the performance in all

models.

25

Table 2.2: The wide and narrow ranges of hyperparameters. A: NMF:P, B: NMF:P+Y,
C: MMDW, D: MNMF, E: MF-Planetoid, F: SS-NMF

Factorization
based methods A B C D E F G Hyperparameter range

α True True True True True True True
[0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,
0.1, 0.3, 0.5, 0.7, 1.0, 3.0, 5.0, 7.0, 10.0]

β True True True
θ True True True True
γ True True
φ True True
ζ True True True True 1e+ 9, [1e+ (5− 10)]
η True [−2,−3,−4,−5]
λ True True True True True True True [0.001, 0.01, 0.1, 1.0, 10.0]

k True True True

25 values for each dataset by varying k
with an increment of 2 in the upper range
and with a decrement of 1 in the lower range
from its actual number of labels q (inclusive)

Random-walk
based methods

DeepWalk &
Node2Vec

p & q = [0.25, 0.50, 0.75, 1.0, 1.25, 1.50,
1.75, 2.0, 2.25, 2.50,
2.75, 3.0, 3.25, 3.50, 3.75, 4.0]

walk-length = [80]
num-walks = [40, 80]

maximum iterations = 500, latent dimension = 128, initialization = âĂIJrandomâĂİ,
convergence = 1e− 5, 5 fold cross validation, 10% & 50% test-train split

Table 2.3: Node Classification Results | Micro-F1 Scores

Unsupervised Models Semi-Supervised Models
Cluster/ Community Models Existing Proposed Baseline Variants Proposed

Datasets DW NMF:P MNMF GEMSEC ComE MMDW NMF:P+Y MNMF+Y SS-NMF

Cora 80.148 80.369 82.664 77.063 82.030 83.916 83.690 84.546 86.273
Citeseer 57.272 59.710 63.565 56.403 60.712 68.911 68.618 69.005 70.141
Wiki 63.009 63.940 65.752 58.969 63.840 66.687 66.177 66.750 70.906
Washington 59.130 59.130 62.609 60.913 62.087 61.130 62.609 62.962 66.087
Wisconsin 48.120 49.023 51.128 52.030 51.504 50.376 50.376 52.759 56.391
Texas 58.511 56.383 57.447 57.021 59.043 56.383 58.511 57.447 63.830
Cornell 38.776 50.000 51.448 51.277 49.490 51.224 50.940 52.041 53.061
PPI 22.216 21.753 21.235 21.417 22.373 23.579 22.186 21.452 23.433
Pubmed 77.413 79.077 79.837 80.599 81.626 80.776 82.388 83.001 84.048

Rank 7.333 7.222 5.222 6.889 5.000 4.444 4.222 2.778 1.111
Shortfall 0.84 0.729 0.553 0.743 0.513 0.41 0.406 0.381 0.007

Node classification

Node classification results are reported in Table: 2.3. The bolded entries in a dataset

column denote the best score achieved in that dataset, and the underlined entries denote

the second best score.

Unsupervised Models:

NMF based neighborhood embedding model, NMF:P performs similar or better than

the sampling-based DW as shown in Tu et al. (2016) on all but Texas and PPI dataset.

Both these models which do not encode supervision information or any clustering infor-

mation are the two least performing models as depicted by their Ranks. The superiority

of NMF:P over DW is visible from the relatively lower Shortfall score. This is consis-

26

tent with findings in the literature that typically Matrix factorization models are better.

NMF:P is not significantly different from DW for p < 0.05 on two-tailed Wilcoxon

signed-rank tests. Skip-gram based models additionally have the power of non-linearity

and optimize cross entropy loss when compared to the simple linear squared-error

based reconstruction loss used in our NMF models. We believe factorizing with KL-

divergence over squared error might improve the performance of factorization models

and match DW in datasets where they currently fail.

Cluster (cluster) enforcing models are the superior unsupervised models. Among

them, MNMF outperforms GEMSEC and ComE on 6/9 datasets except for Texas, PPI,

and Pubmed where ComE outperforms MNMF significantly. This is reflected in the

aggregate scores. Despite ComE beating MNMF on a lower number of datasets, its

rank is better than MNMF as on those datasets it beats both MNMF and other models

significantly. It is ranked 2nd in Texas, 3rd in PPI and 4th in Pubmed. On the other

hand, looking at the shortfall score, MNMF seems to be better than ComE slightly as

on multiple datasets it beats ComE by 2− 3 points. GEMSEC seems to be poor among

the community models. MNMF is not significantly different from ComE for p < 0.05

on two-tailed Wilcoxon signed-rank tests (Demšar (2006)), this reflects the shortfall

scores.

Semi-Supervised Models:

All supervised models obtain better ranking and lower shortfall over unsupervised mod-

els. The Semi-Supervised (SS) variants of the unsupervised models are (statistically)

better than their unsupervised counterparts on all datasets, i.e., MNMF+Y > MNMF

and MFDW+Y > MFDW. Among the baselines, the proposed variant, MNMF+Y is the

second best on all but PPI dataset where MMDW is best. Learning community invari-

ant representations in a supervised manner seems to be useful. Among MMDW and

NMF:P+Y, there is no statistical difference. This is reflected in the obtained rank and

shortfall scores which are similar.

The proposed model, SS-NMF outperforms its base model, NMF:P on all datasets

which is a clear indicator that learning cluster and label invariant representations are

useful. SS-NMF is ranked first in 8/9 datasets while being ranked second on PPI.

Thus, obtaining an average rank score of 1.11 and the lowest shortfall of 0.007. On the

datasets where SS-NMF is ranked first, as per the paired t-test, there exists no case where

27

p−value < 0.05 and t-scores are positive (i.e., no competing method significantly beats

SS-NMF).

Ablation study of SS-NMF

Here, we drill down the components of SS-NMF to analyze the importance of utilizing

label information and cluster information.

Importance of Label Information: Since the smoothing on the cluster space is

based on the label similarity graph, it is necessary to verify whether we need to factorize

the label matrix and whether we should smooth the label space additionally. We report

results for these study in Table: 2.4 where we remove these two components. The model

in column 2 does not have the label smoothing term and the model in column 3 does

not have the label factorization and label smoothing terms. Note that we cannot smooth

on label space without predicting labels.

Label smoothing term provides an improvement of up to 3.88 points in Wiki and no

improvement in Washington. On four datasets it offers an improvement over 1%, and

on another two data sets, it provides an improvement less than 0.5%. From this, it is

clear that the label smoothing term is helpful. Moreover, it can be seen from column

3 that removing label factorization, Y has a significant impact on SS-NMF. Removing

label factorization results in an average drop of 3.45% and the performance up to 6%

with the wiki. Whereas, the average reduction in performance when we remove label

smoothing is 1.44. This experiment indicates that it is necessary to have both the terms.

Table 2.4: Importance of Label Information

SS-NMF - LS(P, Y) - (Y + LS(P, Y))
Cora 86.273 85.838 82.411
Citeseer 70.141 69.750 65.531
Wiki 70.906 67.019 64.689
Washington 66.087 66.087 65.217
Wisconsin 56.391 54.136 54.009
Texas 63.830 61.702 59.575
Cornell 53.061 52.041 51.022

Importance of Clustering Information: Here, we try to understand the importance

of the proposed cluster smoothing term by removing the cluster smoothing term first and

then additionally removing the cluster assignment term too. This corresponds to column

28

2 and column 3 in Table: 4 respectively. Removing the cluster smoothing term results in

an average drop of 0.8% across datasets whereas completely removing all cluster related

components results in an average drop of 1.17%. Cluster smoothing term provides an

additional improvement of up to 1.5% on three datasets and > 0.5 improvement on

5/7 datasets. Removing the cluster term results in a drop in performance by more than

2.2% on three datasets. Note that random cluster assignments without any clustering

objective to drive the learning outperforms the second best model, MNMF+Y in Table

2.3. This demonstrates the usefulness of encoding local invariant representations on

label space. In the next section, we further clearly see the benefit of combining label

and cluster smoothing terms.

Table 2.5: Importance of Cluster Information

SS-NMF - LS(PY , H) - (H + LS(PY , H))
Cora 86.273 86.119 86.052
Citeseer 70.141 69.584 69.523
Wiki 70.906 70.490 70.490
Washington 66.087 65.217 63.478
Wisconsin 56.391 54.887 54.135
Texas 63.830 62.766 62.766
Cornell 53.061 52.041 52.041

Semi-Supervised Learning Study

In this section, we analyze and compare different Laplacian smoothing in Table: 2.6.

First, four models in columns involve Laplacian smoothing term based on the proximity

graph, P and the next four models involve Laplacian smoothing term based on the label

similarity graph, PY . All the models in this table additionally factorize label matrix, Y .

The model in the last column is SS-NMF. SS-NMF is the winner across the board on all

datasets with Rank 1 and Shortfall 0.

Model in column 2, NMF: LS(P, Y) +Y, is the standard Label Propagation (LP)

implemented in NMF style (NMF: LP). It does not additionally factorize the proximity

matrix, P and thus does not have any network embeddings. This is the worst performing

model with the highest rank and shortfall. From this model, it is evident that we need to

learn network embedding as well.

Model in column 1, NMF: LS(P, U) +Y learns embeddings such that the embeddings

of neighboring nodes are closer. This model is similar in spirit to NMF: S + L which

29

factorizes the proximity matrix directly. This model has the second highest shortfall.

Model in column 5, NMF: LS(PY , U) + S + Y (NMF: Planetoid) has the same

objective as Planetoid-G but in NMF style. It enforces nodes with similar labels to

have similar embeddings. In a head-on comparison with NMF: LS(P, U) +Y (col:2), it

shows that enforcing smoothness from a global context has remarkable improvement in

shortfall scores and is statistically better with p < 0.02.

Model in column 4, NMF:P + LS(P, Y) +Y, is the second best performing model

on 5/7 datasets. This model can be seen as an improved Label propagation model

that additionally factorize a proximity matrix, P to learn node embeddings that capture

network structure. This model beats the base NMF:LP.

Model in column 6, is an extension of NMF: Planetoid which includes label smooth-

ing. It can be seen that adding label smoothing provides improvement on all datasets

up to 2.7 points.

Model in column 7 is SS-NMF without, label smoothing term. Label smoothing

term is crucial as it gives improvements up to 3.8 points. Moreover, similarly semi-

supervised clustering with global context is also important as it provides an improve-

ment of up to 2.6 points over NMF: S + LS(P, Y) +Y (col:4) in Washington. Adding

clustering components to label smoothening term NMF:P + LS(P, Y) +Y provides an

average improvement of 1.3 point.

Table 2.6: Semi-Supervised Learning Analysis | Micro-F1 Scores

Laplacian Neighborhood Proximity Graph (P) Label Similarity Graph (PY)
Invariant Space Embedding: U Label: Y Cluster: H S + LS(P, Y) Embedding: U Cluster: H(U)

+ S +(S + LS(P, Y)) + S +(S + LS(P, Y))

Cora 85.021 84.945 84.502 86.052 84.384 85.230 85.838 86.273
Citeseer 69.163 68.859 69.342 69.523 69.523 69.897 69.750 70.141
Wiki 70.085 67.332 67.332 70.490 66.422 69.127 67.019 70.906
Washington 57.391 53.913 64.348 63.478 62.831 63.478 66.087 66.087
Wisconsin 48.872 47.368 52.632 54.135 52.132 54.135 54.136 56.391
Texas 57.447 56.383 59.575 62.766 59.362 60.638 61.702 63.830
Cornell 52.041 50.000 52.041 52.041 52.041 53.061 52.041 53.061

Rank 5.571 7.286 4.857 2.857 5.857 3.143 3.143 1
Shortfall 0.621 0.929 0.546 0.223 0.594 0.29 0.324 0.000

Clusterability of learned representations

We validate superior clusterability of the learned node representations quantitatively in

Table: 2.7 and qualitatively with t-SNE plots in the next section.

30

In Table: 2.7 we report the averaged cluster quality of learned embeddings. We take

the embeddings learned for node classification and report averaged NMI results over

five folds, where each of these fold were run five more times with different initializa-

tions. We used different initialization techniques for initializing the mean of clusters

(k-means++, Principal Component Analysis (PCA)). The clusters were obtained with

k-means and Fuzzy c-means algorithms for multi-class and multi-label datasets corre-

spondingly. The optimal number of clusters was obtained using elbow criterion and

gap statistics (Tibshirani et al. (2001)). We evaluate the obtained clusters against gold

standard classes and report the NMI scores. We used Overlapping NMI (Lancichinetti

et al. (2009)), (McDaid et al. (2011)) to evaluate overlapping clusters corresponding to

the multi-label datasets.

Table 2.7: Node Clustering | (O)NMI Scores

Unsupervised Models Semi-Supervised Models
Cluster/ Community Models Existing Proposed Baseline Variants Proposed

DW NMF:P GEMSEC ComE MNMF MMDW NMF:P + Y MNMF+ Y SS-NMF

Cora 34.28 34.40 35.83 41.02 39.29 50.31 51.38 53.21 57.93
Citeseer 19.04 17.71 21.42 24.42 29.96 32.70 28.94 41.19 53.32
Wiki 32.57 28.31 33.86 32.59 45.62 33.82 47.80 48.38 61.06
Washington 2.88 9.93 8.98 5.89 19.90 15.78 18.45 33.52 40.86
Wisconsin 5.04 6.09 5.46 5.22 11.20 9.27 6.81 17.89 33.9
Texas 2.70 2.85 2.35 3.65 9.00 7.99 10.61 15.14 35.56
Cornell 3.53 4.16 3.91 3.35 3.99 8.76 4.49 4.14 5.88
PPI 9.44 7.91 9.63 9.07 8.77 8.44 8.26 9.19 11.48
Pubmed 20.15 17.28 19.93 29.83 29.77 28.56 29.39 37.32 38.47

Rank 7.67 7.44 6.56 6.33 4.44 4.56 4.33 2.56 1.11
Shortfall 0.914 0.956 0.864 0.817 0.678 0.6 0.641 0.427 0.059

From Table: 2.7, it is evident that SS-NMF performs well on Semi-Supervised node

clustering task. It is the best performing model on eight datasets where it beats the sec-

ond best model by 1-7%, and it is the second best performing model on the other two

datasets where it is falling short of the best by a mere 0.1%. All the Semi-Supervised

NMF models outperform the unsupervised NMF models except for MMDW which is

outperformed by MNMF. Both MFDW+Y and MNMF+Y outperform their unsuper-

vised counterparts, MFDW and MNMF. The supervised MMDW outperforms the sim-

ple unsupervised MFDW in all but Cornell. However, it is thoroughly washed out in

comparison against the unsupervised MNMF. Though MMDW’s max-margin represen-

tations outperformed unsupervised MNMF, it seems that they are not well clusterable.

The consistent superior performance of SS-NMF & MF-Plan suggests that the label

similarity based clusterability criteria can learn informative node representations be-

yond the graph structure. This is supported by the t-SNE plots too, especially that

31

of SS-NMF which provides superior high-quality visualizations of well separable ho-

mophilous clusters.

tSNE Visualization

Figure 2.6: t-SNE Visualization of Embeddings on Cora Dataset for Unsupervised &
Semi-Supervised Methods

(a) MFDW (b) MNMF (c) GEMSEC (d) COME (e) MFDW+Y (f) MNMF+Y (g) MMDW (h) SS-NMF

Here, we present the details of t-SNE experiment on the learned node embed-

dings for Citeseer and Cora dataset in Figure: 2.2 & 2.6. t-SNE plots are especially

well-suited for the visualization of high dimensional data. As t-SNE algorithm scales

quadratically in terms of the number of nodes N, we first reduced the dimension of

learned node embeddings to 64 retaining as much information as possible using the

PCA algorithm. Next, we feed this compressed data to the t-SNE algorithm. In t-

SNE, the perplexity term controls the number of neighbors for each sample to take into

consideration while preserving the local structure in the reduced dimension space. We

experimented with perplexity in the range of 10− 100, increasing by a step size of 10.

We found that perplexity did not have a significant effect on the visualizations for values

> 30. Hence, we fixed 40 as a common value of perplexity for all the competing meth-

ods. It can be seen that our proposed model obtains better clusters visually compared

to other SS methods.

Varying Number of Clusters

We performed a study to understand how the number of clusters influenced the node

classification performance and whether there is any need for learning clusters at all. For

Cora and Wiki, we varied the number of clusters as in Figure: 2.7. Blue solid lines

indicate the node classification performance of our proposed method. Corresponding

Red dotted horizontal lines represent respective performances where all the cluster re-

lated terms were set to 0 (β = 0, φ = 0, ζ = 0), i.e.- learning no clusters (NMF:P

32

Figure 2.7: Varying Number of Clusters

scores). As we can see, major portions of the curves are above their respective dotted

lines, indicating that learning clusters help in guiding node representations.

33

CHAPTER 3

Higher Order Propagation Framework

The graph propagation based neural networks are based on differentiable extensions of

the popular Weisfieler-Lehman(WL) kernels. In this chapter, we first show that a di-

rect adaptation of WL kernels for Collective Classification is inherently limited as node

features get exponentially morphed with neighborhood information when considering

farther hops. More importantly, learning to aggregate information from K-hop neigh-

borhood in an end-to-end differentiable manner is not easily scalable. The exponential

increase in neighborhood size with increase in hops severely limits the model due to

excessive memory and computation requirements. Herein, we propose a Higher-order

Propagation framework (HOPF) that provides a solution for both these problems.

The remainder of this chapter is as follows: We first provide a generic graph kernel

that encompasses numerous existing and our proposed models for collective Classifica-

tion as different instantiations of it. Then, we discuss a hitherto undiscovered phenom-

ena in existing differentiable graph kernels termed as the Node Information Morphing

issue. Then, we propose a specific instantiation of the generic kernel called the Node

Information preserving kernel that solves this issue. Followed by this, we propose the

Higher Order Propagation Framework, HOPF as framework that combines the generic

graph kernel with an iterative inference mechanism. Such a combination of classical it-

erative inference mechanism with recent differentiable kernels allows the framework to

learn graph convolutional filters that simultaneously exploit the attribute and label infor-

mation available in the neighborhood. The iterative learning and inference component

scales the differentiable graph kernels to larger hops beyond the memory limitations.

Finally, we provide the details of the experiments followed by results and analysis of

the issues of interest and proposed solutions on datasets across diverse domains.

Models ΦkΦkΦk F(A) ΨkΨkΨk ααα βββ W φ
k = Wψ

k ?W φ
k = Wψ

k ?W φ
k = Wψ

k ?
Differentiable
Kernel

Iterative
Inference

BL_NODE h0 - - 1 - - - No

BL_NEIGH - D−1A hk−1 - 1 - Yes No

SS-ICA h0 D−1A Ŷ 1 1 No No Yes

WL hk−1 A hk−1 1 1 - - No

GCN hk−1 (D + I)−1/2A(D + I)−1/2 hk−1 (D + I)−1 1 Yes Yes No

GCN-MEAN hk−1 D−1A hk−1 1 1 Yes Yes No

GS-Pool hk−1 maxpool hk−1 1 1 No Yes No

GS-MEAN hk−1 D−1A hk−1 1 1 No Yes No

GS-LSTM hk−1 LSTM gates LSTM 1 1 No Yes No

NIP-MEAN h0 D−1A hk−1 1 1 No Yes No

I-NIP-MEAN h0 D−1A hk−1, Ŷ 1 1 No Yes Yes

Table 3.1: Baselines, existing and proposed models seen as instantiations of the pro-
posed framework.

3.1 Generic propagation kernel

We define the generic propagation (graph) kernel as follows:

h0 = X

hk = σk(α · (Φk ·W φ
k) + β · (F (A) ·Ψk ·Wψ

k))
(3.1)

where Φk and Ψk are the node and neighbor features considered at the kth propagation

step (layer), F (A) is a function of the adjacency matrix of the graph, and W φ
k and Wψ

k

are weights associated with the k-th layer of the neural network. One can view the first

term in the equation as processing the information of a given node and the second term

as processing the neighbors’ information. The kernel recursively computes the outputs

of the kth layer by combining the features computed till the (k − 1)th layer. σk is the

activation function of the k-th layer and α and β can be scalars, vectors or matrices

depending on the kernel.

Label predictions, Ŷ can be obtained by projecting hK onto the label space followed

by a sigmoid or softmax layer corresponding to multi-class or multi-label classification

task. The weights of the model are learned via backpropagation by minimizing an

appropriate classification loss on Ŷ .

36

3.1.1 Relation to existing works:

Appropriate choice of α, β, Φ, Ψ and F (A) in the generic kernel yield different models.

Table 3.1 lists out the choices for some of the popular models, as well as our proposed

approaches. Iterative collective inference techniques, such as the ICA family combine

node information with aggregated label summaries of immediate neighbors to make pre-

dictions. Aggregation can be based on averaging kernel: F (A)=D−1A, or label count

kernel: F (A)=A, etc with labels as neighbors features (Ψk=Ŷ). This neighborhood in-

formation is then propagated iteratively to capture higher order information. ICA also

has a SSL variant (McDowell and Aha, 2012) where after each iteration the model is

re-learned with updated labels of neighbors. Table: 3.1 shows how the modular com-

ponents can be chosen to see Semi-Supervised ICA (SS-ICA) as a special instantiation

of our framework.

The Weisfeiler-Lehman (WL) family of recursive kernels (Weisfeiler and Lehman,

1968; Shervashidze et al., 2011) were initially defined for graph isomorphism tests and

most recent CC methods use differentiable extensions of it. In its basic form, it is the

simplest instantiation of our generic propagation kernel with no learnable parameters as

shown in Table: 3.1.

The normalized symmetric Laplacian kernel (GCN) used in Kipf and Welling (2016)

can be seen as an instance of the the generic kernel with node weight, α=(D+I)−1, indi-

vidual neighbors’ weights’ F (A)=(D+ I)−1/2A(D+ I)−1/2, Φk = Ψk and W φ
k = Wψ

k .

We also consider its mean aggregation variant (GCN-MEAN), where F (A) = D−1A.

In theory, by stacking multiple graph convolutional layers, any higher order informa-

tion can be captured in a differentiable way in O(K × E) computations. However in

practice, the proposed model in Kipf and Welling (2016) is only full batch trainable and

thus cannot scale to large graph when memory is limited.

GraphSAGE (GS) (Hamilton et al., 2017) is the recent state-of-the-art for inductive

learning. GraphSAGE has also proposed variants of kth order differentiable WL ker-

nels, viz: GS-MEAN, GS-Pool and GS-LSTM. These variants can be viewed as special

instances of our generic framework as mentioned in the Table 3.1. GS-Pool applies a

max-pooling function to aggregate neighborhood information whereas GS-LSTM uses

a LSTM to combine neighbors’ information sequenced in random order similar to the

37

model in Moore and Neville (2017). GS has a mean averaging variant, similar to the

to GCN-MEAN model, but treats nodes separately from its neighbors, i.e W φ
k 6= Wψ

k .

Finally, it either concatenates or adds up the node and neighborhood information. GS-

LSTM is over-parameterized for small datasets. With GS-MAX and GS-LSTM there is

a loss of information as Max pooling considers only the largest input and LSTM focuses

more on the recent neighbors in the random sequence.

3.2 Node Information Morphing (NIM): Analysis

In this section, we show that existing models which extract relational features, hk do not

retain the original node information, h0 completely. With multiple propagation steps the

h0 is decayed and morphed with neighborhood information. We term this issue as Node

Information Morphing (NIM).

For ease of illustration, we demonstrate the NIM issue by ignoring the non-linearity

and weights. Based on the commonly observed instantiations of our generic propaga-

tion kernel (Eqn: 3.1), where Φk = Ψk = hk−1, we consider the following equation:

hk = α ∗ Ihk−1 + β ∗ F (A)hk−1 (3.2)

On unrolling the above expression, one can derive the following binomial form:

hk = (α ∗ I + β ∗ F (A))hk−1

hk = (α ∗ I + β ∗ F (A))kh0 (3.3)

From Eqn: 3.3, it can be seen that the relative importance of information associated

with node’s 0th hop information, h0, is αk

(α+β)k
. Hence, for any positive β the importance

of h0 decays exponentially with k. It can be seen that the decay rate for GCN is (D +

I)−k and (2)−k for the other WL kernel variants mentioned in Table: 3.1.

Skip connections and Node Information Morphing:

It can be similarly derived and seen that the information morphing not only happens at

h0 but also for every hk∀k ∈ [0, K − 1]. This decay of neighborhood information can

be lessened by leveraging skip connections. Consider the propagation kernel in Eqn:

38

3.2 with skip connections as shown below:

hk = (α ∗ Ihk−1 + β ∗ F (A)hk−1) + hk−1 (3.4)

The above equation on expanding as above gives:

hk = ((α + 1) ∗ I + β ∗ F (A))kh0 (3.5)

The relative importance of weights of h0 then becomes (α+1)k

(α+β+1)k
, which decays

slower than αk

(α+β)k
for all α, β > 0. Though this helps in retaining information longer,

it doesn’t solve the problem completely. Skip connections were used in GCN to reduce

the drop in performance of their model with multiple hops. The addition of skip con-

nection in GCN was originally motivated from the conventional perspective to avoid

reduction in performance with increasing neural network layers and not with the in-

tention to address information morphing. In fact, their standard 2 layer model cannot

accommodate skip connections because of varying output dimensions of layers. Simi-

larly, GraphSAGE models which utilized concatenation operation to combine node and

neighborhood information also lessened the decay effect in comparison to summation

based combination models. This can be attributed to the fact that concatenation of in-

formation from the previous layer can be perceived as skip connections, as noted by its

authors. Though the above analysis is done on a linear propagation model, this insight

is applicable to the non-linear models as well. Our empirical results also confirm this.

3.3 Node Information Preserving models

To address the NIM issue, we propose a specific class of instantiations of the generic

kernel which we call the Node Information Preserving (NIP) models. One way to avoid

NIM issue is to explicitly retain the h0 information at every propagation step as in the

equation below. This is obtained from Eqn: 3.1 by setting Φk = h0 and Ψk = hk−1, ∀k.

hk = αh0W
φ
k + βF (A)hk−1W

ψ
k (3.6)

For different choices of α, β and F (A), we get different kernels of this family. In

39

particular, setting β = 1 − α and F (A) = D−1A yields a kernel similar to Random

Walk with Restart (RWR) (Tong et al., 2006).

hk = αh0 + βF (A)hk−1 (3.7)

The NIP formulation has two significant advantages: (a) It enables capturing correlation

between k-hop reachable neighbors and the node explicitly and (b) it creates a direct

gradient path to the node information from every layer, thus allowing for better training.

We propose a specific instantiation of the generic NIP kernel below:

NIP-MEAN : hk = σ(h0W
φ
k +D−1Ahk−1W

ψ
k) (3.8)

NIP-MEAN is similar to GCN-MEAN but with Φk = h0 and W φ
k 6= Wψ

k .

3.4 Higher Order Propagation Framework: HOPF

Building any end-to-end differentiable model requires all the relational information to

be in memory. This hinders models with a large number of parameters and those that

process data in large batches from effectively utilizing the Graphics Processing Unit

(GPU). For graphs with high link density and a power law degree distribution, process-

ing even 2nd or 3rd hop information becomes infeasible. Even with p-regular graphs,

the memory grows at O(pK) with the number of hops, K. Thus, using a differentiable

kernel for even a small number of hops over a moderate size graph becomes infeasible.

To address this critical issue of scalability, we propose a novel Higher Order Prop-

agation Framework (HOPF) which incorporates an iterative mechanism over the differ-

entiable kernels. In each iteration of HOPF, the differentiable kernel computes a C hop

neighborhood summary, where C < K. Every iteration starts with a summary, (Ξt−1),

of the information computed until the (t− 1) step as given below.

h0
0 = X; Ξ0 = 0

htk = σ(α ∗ ΦkW
φ
k + β ∗ F (A)Ψt

kW
ψ
k) (3.9)

Ψt
k = [Ψk,Ξ

t−1]

40

After T iterations the model would have incorporated (K = T ×C) hop neighborhood
information. Here, we fix T based on the required number of hops we want to capture,

K, but it can also be based on some convergence criteria on the inferred labels. For the

empirical results reported in this work, we have chosen Ξt−1 to be (predicted) labels Ŷ ,

along the lines of the ICA family of algorithms. Other choices for Ξt−1 includes the K

hop relational information, hK . Figure: 3.1 shows the iterative framework architecture.

Figure 3.1: GCNs coupled with iterative learning

We explain HOPF’s mechanism with a toy chain graph illustrated in Fig: 3.2. The

graph has 6 nodes with attributes ranging over A-F and the graph kernel used is of the

second order. The figure is intended to explain how differentiable and non-differentiable

layers are interleaved to allow propagation up to the diameter. We first analyze it with

respect to node 1. In the first iteration, node 1 has learned to aggregate attributes from

node 2 and 3, viz BC, along with its own. This provides it with an aggregate of in-

formation from A, B and C. At the start of each subsequent iteration, label predictions

are made for all the nodes using a Kth(In Fig: 3.2, K = 2) order differentiable kernel

learned in the previous iteration. These labels are concatenated with node attributes to

form the features for the current iteration. By treating the labels as non-differentible

entities, we stop the gradients from propagating to the previous iteration and hence the

model is only K = 2 hop differentiable.

With the concatenated label information, the model can be made to re-learn from

scratch or continue on top of the pre-trained model from the last iteration. Following

this setup, one can observe that the information of nodes D, E, and F which is not

accessible with a 2nd order differentiable kernel(blue paths) is now accessible via the

non-differentiable paths (red and green paths). In the second iteration, information from

nodes at 3rd and 4th hop (D and E) becomes available and in the subsequent iteration,

information from the 5th hop (F) becomes available. The paths encoded in blue, purple

41

1:A 2:B

ABC ABCD ABCDE CDEF1 2 3 5BCDEF4

ABCDE ABCDE ABCDEF ABCDEF1 2 3 5ABCDEF4

1 2 3 54

CEF6

BCDEF6

ABCDEF6

3:C 4:D 5:E 6:F

ABCDEF ABCDEF ABCDEF ABCDEFABCDEF

Figure 3.2: HOPF explained with a chain graph

and orange represent different iterations in the figure and are differentiable only during

their ongoing iteration, not as a whole.

3.5 Iterative NIP Mean Kernel: I-NIP-MEAN

In this section, we propose a special instance of HOPF which addresses the NIM issue

with NIP kernels in a scalable fashion. Specifically, we consider the following NIP

Kernel instantiation, I-NIP-MEAN with mean aggregation function, by setting F (A) =

D−1A, Φk = h0, Ψ = hk−1, Ξt−1 = Ŷ t−1 and W φ
K 6= Wψ

K .

h0
0 = X; Ŷ 0 = 0

htk = σ(ht
0W

φ
k +D−1A[htk−1, Ŷ

t−1]Wψ
k) (3.10)

Algorithm 1 describes the algorithm for I-NIP-MEAN model. The iterative learning

and inference steps are described in lines: 7-10 and 12-16 respectively. Both learning

and inference happen in mini-batches, nodes, sampled from the labeled set, S or the

unlabeled set, U respectively as shown in lines : 8 and 12 correspondingly. The predict

function described in lines:17-27 is used during learning and inference to obtain label

predictions for nodes, nodes. The procedure first extracts K-hop relational features

(hK) and then projects it to the label space and applies a sigmoid or a softmax depending

on the task, see line: 27.

42

Algorithm 1: I-NIP-MEAN: Iterative NIP Mean Kernel
1 Input: Dataset : (G,S, U,X, Y),
2 No: differentiable hops: C, No: of iterations: T
3 Output: Ŷ
4 Ŷ [S] = 0; Ŷ [U] = 0; Ỹ = Ŷ
5 for t in 1:T do
6 // Learning
7 for epoch_id in 1:Max_Epochs do
8 for nodes in S do
9 Ỹ [nodes] = predict(nodes,G,X, Ŷ ,K)

10 min Loss(Ỹ [nodes], Y [nodes])

11 // Inference
12 for nodes in U do
13 Ỹ [nodes] = predict(nodes,G,X, Ŷ ,K)

14 Ŷ [S] = Y
15 // Temporal averaging of predicted labels
16 Ŷ [U]= (T − t)/T ∗ Ỹ + (t/T) ∗ Ŷ [U]

17 Function predict(nodes,G,X, Ŷ ,K)
18 A, nodes∗ = get_subgraph(G, nodes,K)

19 X = X[nodes∗]; Ŷ = Ŷ [nodes∗]
20 // Compute 0-hop features
21 h0 = σ(XW0)
22 // Compute K-hop features
23 for k in 1 : K do
24 hk = σ(α[h0]W

φ
k + βF (A, [hk−1, Ŷ]Wψ

k))

25 // Predict labels
26 Ỹ = σ(hK [nodes]WL)

27 return Ỹ

To extractK-hop relational features for nodes, the model via get_subgraph function

first gathers all nodes along with their neighbors reachable by less than K + 1 hops

(nodes∗) and represents this entire sub graph by an adjacency matrix (A). A K-hop

representation is then obtained with the kernel as in lines:21-24. At each learning phase,

the weights of the kernels (W φ
k s and Wψ

k , ∀k) are updated via back-propagation to

minimize an appropriate loss function.

43

3.6 Scalability analysis:

In most real-world graphs exhibiting power law, the size of the neighborhood for each

node grows exponentially with the depth of neighborhood being considered. Storing

all the node attributes, the edges of the graph, intermediate activations, and all the as-

sociated parameters become a critical bottleneck. Here we analyze the efficiency of

proposed work to scale to large graphs in terms of the reduction in the number of pa-

rameters and space and time complexity.

Number of parameters: The ratio of available labeled nodes to the unlabeled

nodes in a graph is often very small. As observed in Kipf and Welling (2016) and

Hamilton et al. (2017), the model tends to easily over-fit and perform poorly during test

time when additional parameters (layers) are introduced to capture deeper neighbor-

hood. In our proposed framework with iterative learning and inference, the parameters

of the kernel at (t − 1)th iteration is used to initialize tth kernel and is then discarded,

hence the model parameters is O(C) and not O(K). Thus the model can obtain infor-

mation from any arbitrary hop, K with constant learnable parameters of O(C), where

C = T/K. But in the inductive setup, the parameter complexity is similar to GCN and

GraphSAGE as the kernel parameters from all iterations are required to make predic-

tions for unseen nodes.

Space and Time complexity: For a Graph G = (V,E), we consider aggregating

information up to K hop neighborhood. Let number of nodes N = |V |, and average

degree p = 2|E|/N . For making full batch updates over the graph (like in GCN), com-

putational complexity for information aggregation isO(NpK), and memory required is

O(NK + |E|). Even for moderate size graphs, dealing with such memory requirement

quickly becomes impractical. Updating parameters in mini-batches trades off memory

requirements with computation time. If batches of size b (where, 0 < b/N << 1) are

considered, memory requirement reduces but in worst case, computation complexity

increases exponentially to O(NpK) as neighborhood of size O(bpK) needs to be aggre-

gated for each of N/b batches independently. In a highly connected graph (such as a

PPI, Reddit, Blog etc.), the neighborhood set of a small K may already be the whole

network, making the task computationally expensive and often infeasible. To make this

tractable, GraphSAGE considers a partial neighborhood information. Though useful,

the use of neighborhood information can also significantly hurt the performance in cer-

44

tain cases as shown on citation networks, Cora (Lu and Getoor, 2003) and Cora2 (Mc-

Daid et al., 2011) in Figure: 3.3. Not only it hurts the performance but it also requires

additional hyperparameter tuning for neighborhood size. In comparison, the proposed

work reduces complexity from exponential to linear O(NTpC) in the total number of

hops considered, by doing T iterations of a constant C hop differentiable kernel, such

that T × C = K. In our experiments, we found that even C as small as 2 and T = 5

was sufficient to outperform existing methods on most of the datasets. The best models

were the ones whose C was the largest hop which gave the best performance for the

differnetiable kernel.

Figure 3.3: Impact of NIP-Mean’s performance as percentage of neighbors considered

3.7 Miscellaneous related works

Many extensions of classical methods have been proposed to capture higher-order rela-

tional properties of the data. Glocalized kernels (Morris et al., 2017) are a variant of the

k-dimensional Weisfeiler-Lehman (Weisfeiler and Lehman, 1968) kernel for graph level

tasks that use a stochastic approximation to aggregate information from distant nodes.

The differentiable kernels are all 1-dim WL-Kernels whose direct adaptation suffers

from Node Information Morphing. Relational classifier (Macskassy and Provost, 2003)

builds upon the homophily assumption in the graph structure and diffuses the available

label data to predict the labels of unlabelled ones. To make this process more efficient,

propagation kernels (Neumann et al., 2016) provide additional schemes for diffusing

45

the available information across the graph. However, none of these provide a mecha-

nism to adapt to the dataset by learning the aggregation filter.

From a dynamical systems perspective, predictive state representations (Sun et al.,

2016) also make use of iterative refinement of internal representations of the model for

sequential modeling tasks. However, no extension to graph models has been mentioned.

In computer vision application, iterative Markov random fields (Subbanna et al., 2014;

Yu and Clausi, 2005) have also been shown to be useful for incrementally using the local

structure for capturing global statistics. In this work, we restrict our focus to address the

limitations of the current state-of-the-art differentiable graph kernels to provide higher

order information for the Collective Classification task. Moreover, HOPF additionally

leverages label information that is found useful.

Message Passing Neural Network (Gilmer et al., 2017) is a message passing frame-

work which contains the message and read out component. They are defined for graph

level tasks. HOPF is explicitly defined for node level tasks and aims at scaling exist-

ing graph networks. HOPF’s generic propagation kernel is more detailed than MPNN’s

message component and can additionally support iterative learning and inference.

3.8 Experiments

In this section, we describe the datasets used for our experiments, the experimental

setup, the implementation details and the models compared.

3.8.1 Dataset details

We extensive evaluate the proposed models and the baselines on multiple datasets from

various domains. In this work, we treat these networks as undirected graphs but the

proposed framework can also handle directed graphs with non-negative edges. The

statistics of datasets used are provided in Table: 3.2 and the details are described below:

Social networks: We use Facebook (FB) from Pfeiffer III et al. (2015); Moore

and Neville (2017), BlogCatalog (BLOG) from Wang et al. (2010) and Reddit dataset

from Hamilton et al. (2017). In the Facebook dataset, the nodes are Facebook users

46

Table 3.2: Dataset stats: |V|, |E|, |F|, |L|, Lm denote number of nodes, edges, features,
labels and is it a multi-label dataset ?

Dataset Network |V| |E| |F| |L| Lm
Cora Citation 2708 5429 1433 7 F
Citeseer Citation 3312 4715 3703 6 F
Cora2 Citation 11881 34648 9568 79 T
Pubmed Citation 19717 44327 500 3 F
Yeast Biology 1240 1674 831 13 T
Human Biology 56944 1612348 50 121 T
Reddit Social 232965 5376619 602 41 T
Blog Social 69814 2810844 5413 46 T
Fb Social 6302 73374 2 2 F
Amazon Product 16553 76981 30 2 F
Movie Movie 7155 388404 5297 20 T

and the task is to predict the political views of a user given the gender and religious

view of the user as features. In the BlogCatalog dataset, the nodes are users of a social

blog directory, the user’s blog tags are treated as node features and edges correspond to

friendship or fan following. The task here is to predict the interests of users. In Reddit,

the nodes are the Reddit posts, the features are the averaged glove embeddings of text

content in the post and edges are created between posts if the same users comment on

both. The task here is to predict the sub-Reddit community to which the post belongs.

Citation Networks: We use four citation graphs: Cora (Lu and Getoor, 2003),

Citeseer (Bhattacharya and Getoor, 2007), Pubmed (Namata et al., 2012) and Cora-

2 (Mccallum, 2001). In all the four datasets, the articles are the nodes and the edges

denote citations. The bag-of-word representation of the article is used as node attributes.

The task is to predict the research area of the article. Apart from Cora-2, which is a

multi-label classification dataset from Mccallum (2001), others are multi-class datasets.

Biological networks: We use two protein-protein interaction network: Yeast and

Human. Yeast dataset is part of the KDD cup 2001 challenge (Hatzis and Page, 2001)

which contain interactions between proteins. The task is to predict the function of these

genes. Similarly, the Human dataset, introduced in Hamilton et al. (2017), is a protein-

protein interaction (PPI) network from Human Tissues. The dataset contains PPI from

47

24 human tissues and the task is to predict the gene’s functional ontology. Features

consist of positional gene sets, motif gene sets, and immunology signatures.

Movie network: We constructed a movie network from Movielens-2k dataset avail-

able as a part of HetRec 2011 workshop (Cantador et al., 2011). The dataset is an ex-

tension of the MovieLens10M dataset with additional movie tags. The nodes are the

movies and edges are created between movies if they share a common actor or director.

The movie tags form the movie features. The task here is to predict all possible genres

of the movies.

Product network: We constructed an Amazon DVD co-purchase network which is

a subset of Amazon_060 co-purchase data by Leskovec and Sosič (2016). The network

construction procedure is similar to the one created in Moore and Neville (2017). The

nodes correspond to DVDs and edges are constructed if two DVDs are co-purchased.

The DVD genres are treated as DVD features. The task here is to predict whether a

DVD will have Amazon sales rank ≤ 7500 or not.

3.8.2 Experiment setup:

In Table: 3.4, we report the averaged test results for transductive experiments obtained

from models trained on the 5 different training sets. We also report results on the Trans-

fer (Inductive) learning task introduced in Hamilton et al. (2017) under their same set-

ting, where the task is to classify proteins in new human tissues (graphs) which are

unseen during training. Results on the inductive setup is provided in Table: 3.5.

The experiments follow a SSL setting with only 10% labeled data. We consider

20% of nodes in the graph as test nodes and randomly create 5 sets of training data by

sampling 10% of the nodes from the remaining graph. Further, 20% of these training

nodes are used as the validation set. We do not use the validation set for (re)training.

Weighted Cross Entropy Loss (WCE)

Models in previous works (Yang et al., 2016b; Kipf and Welling, 2016), were trained

with a balanced labeled set i.e equal number of samples for each label is provided for

training. Such assumptions on the availability of training samples and similar label

48

distribution at test time are unrealistic in most scenarios. To test the robustness of CC

models in a more realistic set-up, we consider training datasets created by drawing

random subsets of nodes from the full ground truth data.

It is highly likely that randomly drawn training samples will suffer from severe class

imbalance. This Imbalance in class distribution can make the weight updates skewed

towards the dominant labels during training. To overcome this problem, we generalize

the weighted cross entropy defined in Moore and Neville (2017) to incorporate both

multi-class and multi-label setting. We use this as the loss function for all the methods

including baselines. The weight ω for the label i is given in the equation below, where

|L| is the total number of labels and Nj represents the number of training samples with

label j. The weight of each label ωi is inversely proportional to the number of samples

having that label.

ωi =

∑|L|
j=1 Nj

|L| ×Ni

(3.11)

3.8.3 Implementation details

For optimal performance, HOPF models are processed in mini-batches and also make

use of queues to pre-fetch the exponential neighborhood information of nodes of a mini-

batch. The recursive propagation steps are computed with sparse-dense computations.

The processed data and code would be made publicly available soon. Mini-batching

also makes it possible to efficiently distribute the gradient computation in a multi-GPU

setup, we leave this enhancement for future work. The choice of data structure for

the kernel is also crucial for processing the graph, i.e trade-off between adjacency list

and adjacency matrix results. Working with maxpool or LSTMs are difficult using

adjacency matrix as the node’s neighborhood information needs to be flattened dynami-

cally. Models based on LSTM will also have to deal with issues of nodes having highly

varying degrees and limitations of sequential processing of nodes even at the same hop

distance. The code for HOPF framework processes neighborhood information with

adjacency matrices and is primarily suited for weighted mean kernels.

49

Hyper-parameters

The hyper-parameters for the models are the number of layers of neural network (hops),

dimensions of the layers, dropouts for all layers and L2 regularization, similar to Kipf

and Welling (2016). We train all the models for a maximum of 2000 epochs using

Adam (Kingma and Ba, 2014) with the initial learning rate set to 1e-2. We use a vari-

ant of patience method with learning rate annealing for early stopping of the model.

Specifically, we train the model for a minimum of 50 epochs and start with a patience

of 30 epochs and drop the learning rate and patience by half when the patience runs out

(i.e when the validation loss does not reduce within the patience window). We stop the

training when the model consecutively loses patience for 2 turns. We added all these

components to the baseline codes too. In fact, we observed an improvement of 25.91

percentage for GraphSage on their dataset. GraphSAGE’s LSTM model gave Out of

Memory error for Blog, Movielens, and Cora2 as the initial feature size was large and

with the large number parameters for the LSTM model the parameter size exploded.

Hence, for these datasets alone we reduced the features size and ran the LSTMs.

We searched for optimal hyper-parameter setting on a two-layer deep feedforward

neural network with the node attributes (BL_NODE) alone. We then use the same

hyper-parameters across all the other models. We row-normalize the node features and

use Glorot initialization (Glorot and Bengio, 2010) for weights. Since the percentage

of different labels in training samples can be significantly skewed, similar to Moore

and Neville (2017) we weigh the loss for each label inversely proportional to its total

fraction as in Eqn: 3.11. We ensure that all models have the same setup in terms of the

weighted cross entropy loss, the number of layers, dimensions, patience based stopping

criteria and dropouts. The best results for models across multiple differentiable hops

were reported, 3 hops for Amazon, 4 hops for Cora2 and HUMAN and 2 hops for the

remaining datasets. The number of outer steps T for iterative learning was fixed to 5.

For the Reddit dataset, we used partial neighbors 25 and 10 in 1st and 2nd hop which is

the default GraphSAGE setting as the dataset had extremely high link density. Methods

are compared and evaluated on Micro-F1 metric.

50

Table 3.3: Hyperparameters for different datasets

Hyperparams CORA CITE CORA2 YEAST HUMAN BLOG FB AMAZON MOVIE Pubmed Reddit
Learning Rate 1E-02 1E-02 1E-02 1E-02 1E-02 1E-02 1E-02 1E-02 1E-02 1E-02 1E-02
Batch Size 128 128 128 128 512 512 128 512 64 128 512
Dimensions 16 16 128 128 128 128 8 8 128 16 128
L2 weight 1E-03 1E-03 1E-06 1E-6 0 1E-06 0 0 1E-06 1E-3 0
Dropouts 0.5 0.5 0.25 0.25 0 0 0 0 0 0.5 0
WCE Yes Yes Yes Yes No Yes Yes Yes Yes Yes No
Activation ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU

3.8.4 Models compared:

We compare the proposed NIP models with various differentiable WL kernels, Semi-

Supervised ICA and two baselines, BL_NODE and BL_NEIGH as defined in Table:

3.1. BL_NODE is a K-layer feedforward network that only considers the node’s infor-

mation ignoring the relational information whereas BL_NEIGH ignores the node’s in-

formation and considers the neighbors’ information. BL_NEIGH is a powerful baseline

which we introduce. It is helpful to understand the usefulness of relational information

in datasets. In cases where BL_NEIGH performs poorer than BL_NODE, the dataset

has less or no useful relational information to extract with the available labeled data and

vice versa. In such datasets, we observe no significant gain in considering beyond one

or two hops. All the models in Table: 3.4 and Table: 3.5 except SS-ICA, GCN and

GraphSAGE models have skip connections. GraphSAGE models combine node and

neighborhood information by concatenation instead of summation.

3.9 Results and Discussions

In this section, we first provide measures for evaluating the consistency of models across

datasets and then provide results of our experiments as summarized in Tables 3.4 and

3.5 followed by analysis on the same.

3.9.1 A measure of consistency across datasets

When comparing multiple algorithms across multiple datasets, one naive way of iden-

tifying the best algorithm is to simply compare the number of datasets on which each

algorithm gives the best results. For example, it is evident from Table 3.4, that the

proposed algorithm I-NIP-MEAN gives the best results on 5/11 datasets followed by

51

SS-ICA which gives the best results on 2/11 datasets. By this naive measure of count-

ing the number of wins of a given algorithm, the proposed method outperforms existing

methods. However, we argue that this is not the correct way of comparing multiple

algorithms on different datasets. For example, there could be an algorithm which is

consistently the second best algorithm on all the datasets with minute difference from

the best and yet have zero wins. To capture this notion of consistency, we introduce a

measure, shortfall, which captures the relative shortfall in performance compared to the

best performing model on a given dataset.

shortfall[data] =
best[data] - performance[data]

best[data]
(3.12)

Where best[dataset] is the micro_f1 of the best performing model for the dataset and

performance[data] is the model’s performance for that dataset. In Table: 3.4, we report

the average shortfall across datasets. Lower shortfall indicates a better consistent per-

formance. Even using this measure the proposed algorithm I-NIP outperforms existing

methods. In particular, notice that while SS-ICA seemed to be the second best algo-

rithm usig the naive method of counting the number of wins, it does very poor when we

consider the shortfall metric. This is because SS-ICA is not consistent across datasets

and in particular it gives a very poor performance on some datasets which is undesir-

able. On the other hand, I-NIP-MEAN not only wins on 5/11 datasets but also does

consistently well on all the datasets and hence has the lowest average shortfall.

Table 3.4: Results in Micro-F1 for Transductive experiments. Lower shortfall is better.
Top two results in each column in bold.

Datasets Aggregate measures

MODELS Blog FB Movie Cora Citeseer Cora2 Pubmed Yeast Human Reddit Amazon Shortfall Rank

BL_NODE 37.929 64.683 50.329 59.852 65.196 40.583 83.682 59.681 41.111 57.118 64.121 16.9 8.82

BL_NEIGH 19.746 51.413 35.601 77.43 70.181 63.862 83.16 53.522 60.939 59.699 66.236 17.3 8.45

GCN 34.068 50.397 39.059 76.969 72.991 63.956 85.722 62.565 58.298 75.667 61.777 11.0 6.64

GCN-S 39.101 63.682 51.194 77.523 71.903 63.152 86.432 60.34 62.057 77.637 73.746 4.1 4.36

GCN-MEAN 38.541 62.651 51.143 76.081 72.357 62.842 85.792 61.787 64.662 74.324 63.674 5.6 6

GS-MEAN 39.433 64.127 50.557 76.821 70.967 62.8 84.23 59.771 63.753 79.051 68.266 4.9 6

GS-MAX 40.275 64.571 50.569 73.272 71.39 53.476 85.087 62.727 65.068 78.203 70.302 5.5 4.73

GS-LSTM 37.744 64.619 41.261 65.73 63.788 38.617 82.577 58.353 64.231 63.169 68.024 14.4 8.45

NIP-MEAN 39.433 64.286 51.316 76.932 71.148 63.901 86.203 61.583 68.688 77.262 69.136 3.6 4

SS-ICA 38.517 64.349 52.433 75.342 68.973 63.098 84.798 68.444 43.629 81.92 65.789 6.6 5.73

I-NIP-MEAN 39.398 62.889 51.864 78.854 71.541 66.23 85.341 69.917 68.652 81.64 75.045 0.9 2.81

52

Table 3.5: Results in Micro-F1 for Inductive learning on Human Tissues

Node Neighbor NIP-MEAN GCN-MEAN GCN GS-Mean GS-Max GS-LSTM SS-ICA I-NIP-MEAN

PPI 44.51 83.891 92.243 86.049 88.585 79.634 78.054 87.111 61.51 92.477

3.9.2 Baselines Vs. Collective Classification (CC) models

As mentioned earlier, the baselines BL_NEIGH and BL_NODE use only neighbor and

only node information respectively. In datasets, where BL_NEIGH significantly outper-

form BL_NODE, all CC models ouperform both these baselines by jointly utilizing the

node and neighborhood information. In datasets such as Cora, Citeseer, Cora2, Pubmed

and Human, where performance of BL_NEIGH > BL_NODE, CC models improve

over BL_NEIGH by up to 8% in the transductive setup. Similarly, on the inductive task

where the performance of BL_NEIGH is greater than BL_NODE by ≈ 40%, CC meth-

ods end up further improving by another 8%. In Reddit and Amazon datasets, where

the performance of BL_NODE ≈ BL_NEIGH, CC Methods still learn to exploit use-

ful correlations between them to obtain a further improvement of ≈ 20% and ≈ 10%

respectively.

3.9.3 WL-Kernels Vs NIP-Kernels

We make the following observations based on the performance of WL-Kernels and

NIP-Kernels. First, we empirically observe the issue of Node Information Morphing in

WL-kernels. Then, we provide empirical evidence suggesting the benefits of using skip

connection followed by highlighting the superiority of NIP kernels over WL-Kernels.

1. Node Information Morphing in WL-Kernels: The poor performance of BL_NEIGH

compared to BL_NODE on the Blog, FB and Movie datasets suggests that the neigh-

borhood information is noisy and node features are more crucial. The original GCN

which aggregates information from the neighbors but does not use CONCAT or skip

connections typically suffers a severe drop in performance of up to ≈ 13% on datasets

with high degree. Despite having the node information, GCN performs worse than

BL_NODE on these datasets.

2. Solving NIM with skip connections in WL-Kernels: The original GCN architec-

ture does not allow for skip connections from h0 to h1 and from hK−1 to hK . We modify

53

the original architecture and introduce these skip connections (GCN-S) by extracting

h0 features from the 1st convolution’s node information. With skip connections, GCN-S

outperforms the base GCN on 8/11 datasets. The performance boost is ≈ 5 − 13% in

the case of Blog, FB, Movie and Amazon datasets even when we consider only 2 hops

thereby decreasing the shortfall on these datasets. In particular, the issue of NIM is

resolved as the performance of GCN-S now comes close to that of BL_NODE and in

the case of Amazon dataset it actually outperformcs BL_NODE. GCN-MEAN which

also has skip connections performs quite similarly to GCN-S in all datasets and does

not suffer from NIM as much as GCN. It is important to note that skip connections are

required not only for going deeper but more importantly, to avoid information morphing

even for smaller hops.

GS models do not suffer from NIM issue as they concatenate node and neighbor-

hood information. Authors of GS also observed better results in their tasks with the

addition of CONCAT. GS-MEAN’s counterpart among the summation models is the

GCN-MEAN model which gives similar performance on most datasets, except for Red-

dit and Amazon where GS-MEAN with concat performs better than GCN-MEAN by

≈ 5%. GS-MAX provides very similar performances to GS-MEAN, GCN-MEAN, and

GCN-S across the board. Their shortfall performances are also very similar. GS-LSTM

typically performs poorly which might be because of the morphing of earlier neighbors’

information by more recent neighbors by in the list.

3. Solving NIM with NIP Kernels: NIP-MEAN, a MEAN pooling kernel from the

NIP propagation family outperforms its WL family counterpart, GCN-MEAN on 9/11

datasets. It achieves a significant improvement of ≈ 3− 6% over GCN-MEAN in Hu-

man, Reddit and Amazon datasets. It similarly outperforms GS-MEAN on another 9/11

datasets even though GS-MEAN has twice the number of parameters. NIP-MEAN pro-

vides the most consistent performance among the non-iterative models with a shortfall

as low as 3.6. NIP-MEAN’s clear improvement over its WL-counterparts demonstrates

the benefit of using NIP family of kernels which explicitly preserve the node informa-

tion and mitigate the NIM issue.

54

3.9.4 Iterative inference models Vs. Differentiable kernels

Iterative inference models, SS-ICA and I-NIP-MEAN exploit label information from

the neighborhood and scale beyond the memory limits of differentiable kernels. The

benefit of label information over attributes can be analyzed with SS-ICA which ag-

gregates only the label information of immediate neighbors. In Yeast dataset, SS-ICA

gains ≈ 8 − 10% improvement over non-iterative models which do not use label in-

formation. Similarly, in Reddit dataset, both attribute and label information are equally

useful while using label information seems to provide slightly better results as SS-ICA

manages to obtain 81.92 starting from 57.118 (BL_NODE). However, SS-ICA does not

give good performance on some datasets as it does not leverage neighbors features and

is restricted to only learn first-order local information unlike multi-hop differentiable

NIP and other WL-based kernels.

Iterative Differentiable kernels Vs. Rest

I-NIP-MEAN which is an extension of NIP-MEAN with iterative learning and infer-

ence can leverage attribute information and exploit non-linear correlations between the

labels and attributes from different hops. I-NIP-MEAN improves over NIP-MEAN on

8/11 datasets with significant boost in performance up to ≈ 3 − 8% in cora2, Reddit,

Amazon, and Yeast datasets. I-NIP-MEAN also successfully leverages label informa-

tion like SS-ICA and obtains similar performance boost on Yeast and Reddit dataset. It

also outperforms SS-ICA on 8/11 datasets. The benefits of using neighbors’ attributes

along with labels are visible in Amazon and Human datasets where I-NIP-MEAN model

achieves ≈ 10% and ≈ 25% improvement respectively over SS-ICA which uses label

information alone. I-NIP-MEAN combines the best of both the worlds, viz., differen-

tiable kernel based methods and iterative inference based methods and emerges as the

most robust model across all datasets with the lowest shortfall of ≈ 0.9%.

3.9.5 Inductive learning on Human dataset

For the inductive learning task in Table: 3.5, the cc models obtain a 44% improve-

ment over BL_NODE by leveraging relational information. The I-NIP-MEAN and

NIP-MEAN kernels achieves best performance with a ≈ 6% improvement over GCN-

MEAN by explicitly capturing the correlations between the node and multi-hop neigh-

borhood information.

55

CHAPTER 4

Fusion Graph Convolutional Networks

Summarizing information from multiple hops is useful in many applications where

there exists semantics in local and group level interactions among entities. Thus, defin-

ing and finding the significance of neighborhood information over multiple hops be-

comes an important aspect of the problem. However, on analysis we find that existing

WL-kernel based GCNs and GraphSAGE models have a restricted formulation that hin-

ders them from effectively learning relevant relational features.

In this chapter, we first provide a simplified re-formulation of the generic kernel in

3.1 aimed at abstracting GCN and GraphSAGE models alone. Then, we analyze the

representation capacity of these models to regulate information from multiple hops in-

dependently. From our analysis, we show that these models despite being powerful,

have limited representation capacity to capture multi-hop neighborhood information ef-

fectively. Further, we also propose a mathematically motivated, yet simple extension to

existing GCNs which has improved representation capacity. Finally, we report experi-

mental evidences supporting the analysis and proposed model.

4.1 Unified Recursive Graph Propagation Kernel

GCN and GraphSAGE differ in terms of the neighborhood features considered (Ψk),

node’s importance (α) and their method of combining node and neighborhood informa-

tion.GCNs have shared weights for node and neighbors features and it combines these

information by summation. Whereas, GraphSAGE combines information by concate-

nation (CONCAT) and hence will have different weights for them.

Focused only on these differences and additionally on the mode of combination of

information, we simplify and re-formulate the generic kernel in Eqn: 3.1 as below:

hk = σk(combine(Φk,Ψk)Wk)

Φk = αhk−1

Ψk = F (A)hk−1

(4.1)

Where Φk and Ψk denote the (k − 1)th hop node and it’s neighbors’ features respec-

tively, α denotes the scaling factor for node features, F (A) denotes the neighborhood

aggregation function, and combine denotes the mode of combination of node and it’s

neighbors’ features. For brevity, we have made the neighbors’ weighting function to be

independent of hk−1.

The concatenation combination (denoted by square braces below) can also be ex-

pressed in terms of a summation of node and neighbors features with different weight

matrices, W φ
k ∈ Rd×d and Wψ

k Rd×d respectively by appropriately padding zero matri-

ces, (0) as shown below.

hk = σk([αhk−1, F (A)hk−1][W φ
k ,W

ψ
k])

hk = σk([α · hk−1,0][W φ
k ,0] + [0, F (A)hk−1][0,Wψ

k])

hk = σk([α · hk−1W
φ
k ,0] + [0, F (A)hk−1W

ψ
k])

(4.2)

The Φk and Ψk terms for CONCAT and SUMMATION combinations are similar

if weights are shared in the CONCAT formulation as shown in Eqn: 4.3 and Eqn: 4.4

respectively, i.e W φ
k = Wψ

k = Wk.

hk = σk(([αhk−1, 0] + [0, F (A)hk−1])[Wk,Wk]) (4.3)

hk = σk(αhk−1 + F (A)hk−1Wk) (4.4)

For brevity of analysis made henceforth, we only consider the summation model to

discuss the limitations of the recursive propagation kernels without losing any general-

ity on the deductions made. Further, we provide another abstraction to the summation

formulation as in Eqn: 4.4 by Eqn: 4.5. Henceforth, we refer to Eqn: 4.5 as the generic

recursive propagation kernel in the upcoming analysis.

Ω = (α + F (A))

hk = σk(Ωhk−1Wk)
(4.5)

58

4.2 Lack of independent regulatory paths to different

hops

Neighbor’s from different hops might contribute differently to the end classification

task depending on the problem and the network dataset. Depending on the task, the

influence of a neighbor on a node might be constant or increase or decrease with an

increase in the neighborhood depth, K. There can be an alternating influence too,

consider a simple predator-prey network where the two kinds of information can be

captured at alternate hops. In general, networks can naturally have different k-partite

structure locally or globally; therefore information from a specific partition might need

to be ignored or grouped separately to find relevant nodes. In the absence of prior

knowledge, this is hard to hand-code for large graphs. Hence it is necessary for neural

propagation models to have the flexibility to adapt and learn the importance of different

neighborhood information accordingly.

However, though these propagation models can combine information from multiple

hops, their formulation restricts them from independently regulating information from

different hops. This is a consequence of recursively computing K th hop information

in terms of (K-1)th hop information which results in interdependence among weights

associated with the different hop information. We can see this below in the recursively

expanded unified graph kernel.

hK = σK(Ω · ...σ2(Ω · (σ1(Ω · h0W1)W2)...WK) (4.6)

Let’s analyze this with an example of a 3-hop linear kernel with K=3 and σk = I

which on expansion yields the following equation:

h3 = α3h0Πk=3
k=1Wk + 3α2F (A)h0Πk=3

k=1Wk

+ 3αF (A)2h0Πk=3
k=1Wk + F (A)3h0Πk=3

k=1Wk

(4.7)

This expansion makes it trivial to note that all the weights influence all the different

hop information (h0, F (A)h0, F (A)2h0 and F (A)3h0) in the model. For example, if we

take the case where only first-hop information (just F (A) term) is required, then there

exists no combination of Wks that can provide it under the current model. It should be

59

noted that we cannot obtain the 1st hop information alone by using a 1-hop kernel as

that would also include 0-hop information, F (A)0h0 = h0.

From the above analysis, we can say that these recursive graph kernels have limited

representation capacity as they cannot capture information from a particular subset of

hops without including information from other hops. The limitation of these networks

can be attributed to the specific formulation of recursion used to compute output at

every layer. As with every layer k of graph convolutional nets, a new information about

the kth hop is introduced as Ω = I + F (A) in hk = σk(Φhk−1Wk) whereas with the

conventional feed forward nets there is no inclusion of new information at every layer,

k as Φ = I in hk = σ(Φhk−1Wk). More importantly, the output at kth layer passes

through a series of computations involving later hops (j > k) before reaching the last

output layer. And also note that this phenomenon happens for previous layers too. Thus,

this leads to a lack of independent computation paths to regulate information from any

hop without affecting information from later and earlier hops.

In the remainder of this section, we analyze the representation capacity of these

propagation models by incorporating additional popular components as follows.

4.2.1 Inclusion of bias

An inclusion of bias term in the recursive propagation kernel as in Eqn: 4.8 is not useful.

hk = σk(Φ · hk−1Wk + bk−1) (4.8)

The model still cannot regulate the relative magnitude of information independently

as information at each hop, hk (with the bias) is still computed recursively in terms of

the previous hop. The resultant inter-dependency can be seen in Eqn: 4.9 with expan-

sion of Eqn: 4.8. This was also observed empirically that the addition of bias did not

result in any significant change in results (not reported here).

hK = (Φ)KΠK
i=1h0Wi +

K∑
j=2

(Φ)j(ΠK
l=k−j+1Wi)bk−j (4.9)

60

4.2.2 Inclusion of skip connections

Adding the popular skip connection (He et al., 2016) to these models as in Eqn: 4.10

improves the multi-hop information regulation capacity.

hk = σk(Φhk−1Wk) + hk−1, ∀k ∈ [2, K] (4.10)

hk = Σk
i=1σk(Φ · hi−1Wi) (4.11)

On recursively expanding the above equation, it can be seen that adding skip connec-

tions to a layer, k results in directly adding information from all the lower hops, i < k

as shown in Eqn: 4.11. Unlike Eqn: 4.5 where the output at each layer, k was only

dependent on the previous layer, hk−1 accounting to only one computational path; now

adding skip connections allows for multiple computational paths. As it can be seen

that at the K th layer the model has the flexibility to select an output from any or all

hk∀k < K.

However, it can only discard information beyond a particular hop, k and is still not

sufficient to individually regulate the importance of information from individual hop

as all hops, i ≤ k are inter-dependent. Lets us consider the same example of a 3-

hop model as earlier to capture information from 1st hop alone ignoring the rest. The

best, the 3-hop model with skip connections can do is to learn to ignore information

from 2nd and 3rd hop by setting W2=W3=0 and including h1 along with h0. It can be

reasoned as before to see that W0 cannot be set to 0 as h1 depends on the result of

h0 thereby having no means to ignore information from h0. This limits the expressive

power to efficiently span the entire space of Kth order neighborhood information. To

summarize, skip connections at best can obtain information up to a particular hop by

ignoring information from subsequent hops. The CONCAT combination can be perceived

as linear skip connection as noted by the authors of GraphSAGE.

4.2.3 Inclusion of different weights

For convenience, in this subsection alone we change the notations for weights associ-

ated with the node and the neighbor features to W 0
k and W 1

k instead of WΦ
k and WΨ

k ,

respectively. The representation capacity of the recursive graph kernel with different

61

Figure 4.1: Binomial Computation Trees for Graph Kernels

weights for the node and the neighbor features as in Equation 4.12 is better than a ker-

nel with shared weights.

hK = αhk−1W
0
k + F (A)hK−1W

1
k

(4.12)

The flexibility of this formulation can be explained with the binomial expansion as

seen earlier in 3.3. At every recursive step, k, the model can be seen deciding to use

only the node information or the neighbors’ information or both, by manipulating the

weights (W 0
k and W 1

k to be zero or non-zero values). For convenience, we refer the

weights to be set if the weights have non-zero values. The decisions of the model can

be better understood when visualized as a binomial tree where the nodes are labeled

with the computation output, and the edges are labeled by the decision taken, i.e. W 0
k

or W 1
k . The left figure in Figure 4.1 illustrates the computation graph for a 2 hop kernel

with different weights.

For any K hop kernel with a K recursive computational layer, there will be 2K

unique paths/decisions to make. The 2K paths lead to 2K leaf nodes which compute

different F (A)kh0 terms. F (A)kh0 terms are available at one or more leaves where the

multiplicity of availability is given by the different ways to choose k from K, i.e.,
(
K
k

)
(binomial coefficient). h0 and hK terms have only one path, i.e

(
K
0

)
=
(
K
K

)
= 1, whereas

the terms hk (0 < k < K) have more than one path.

Let string ‘0’ denote the identity transformation, hk−1W
0
k and ‘1’ denote the F(A)

transformation, hk−1W
1
k . We say a transformation has happened if the weights asso-

ciated with it have non-zero values. To comprehend the dependencies among weights,

let us trace the weights along the different paths to leaf nodes. We create the tree on

the right in Figure 4.1 from the output computation tree on the left by relabeling nodes

with substrings representing the transformation taken to reach that node. For example,

a node labeled ‘01’ indicates that the node was reached by taking an identity transfor-

62

mation followed by an F(A) transformation. Hence, the number of 0s and 1s at each

leaf node conveys the pattern to compute each hop information for a K hop kernel.

In Table 4.1, we tabulate the number of identities, #W 0
k s and the number of F (A)

transformations, #W 1
k s taken to obtain different hop information at the leaves for a 3-

hop kernel. #Paths in the table denote the number of paths to compute the same. With

the example in the table, we generalize the following claims to any K hops.

• F (A)k computation requiresK−k identity transformations (#W 0
k s) and k F (A)

transformations (#W 1
k s).

• All F (A)k computation has a unique combination of #W 0
k s and #W 1

k s. From
this, we can say that the model can learn to obtain any specific hop information
without the inclusion of any information from the rest of the hops unlike shared
weight models, where all the F (A)k computations shared the same path.

• We cannot independently regulate information from two or more required hops
without the inclusion of information from the others hops lying within the range
of the required set. This is a consequence of sharing weights among the compu-
tation paths as seen in the Figures.

Leaving out the first two trivial claims we analyze the last claim. Let S define the

set of all required hops in a K hop graph kernel. Let i and j be the minimum and the

maximum hops in that set. For the ith hop, (K − i) W 0
k s and i W 1

k s should be set (non

zero values) and similarly for the jth hop (K − j) W 0
k s and j W 1

k s should be set. ith

and jth hop information can be obtained by traversing any path that would satisfy the

previously mentioned conditioned on the number of identity and F (A) transformations.

Thus, put together (K − i) W 0
k s and j W 1

k s will be set to obtain F (A)ih0 and F (A)jh0

when traversed along one path in the computation tree, to the leaf from the root.

Since the model sums up all the leaf nodes, it will also include information from

those leaf nodes which can be traversed from the root by following the set W 0
k s and

W 1
k s. We go about the proof by first formulating the condition under which other hops’

information can be obtained. Then, we go on to show that if j > i + 1 then j − i

additional hop information will be included.

Let y denote hops, with y /∈ {i, j}. Computing the yth hop requires (K − y) W 0
k s

and y W 1
k s. F (A)y can be obtained only if CK−i

K−y ≥ 1 and Cj
y ≥ 1, which essentially

means that (K−y)W 0
k s should be a subset ofK−i W 0

k s and y W 1
k s should be a subset

of j W 1
k s which have already been set while considering ith and jth hop information.

We then find the possible y values under the following three conditions listed below:

63

#W 0
k s #W 1

k s Paths
F (A)0h0 3 0 1
F (A)1h0 2 1 3
F (A)2h0 1 2 3
F (A)3h0 0 3 1

Table 4.1: Number of Identity and F(A) transformations

• 0 < y < i: As y < i < j, the required number of W 1
k s for yth hop is available

whereas the required number of W 0
k s are not as K − 0 > K − i − 1 > K − i.

Hence information from [0, i) is not included.

• j < y < K: As y > j, the required number of W 1
k s are unavailable though the

required number of W 0
k s can be satisfied as K − y < K − j < K − i.

• i < y < j: As i < y < j, the required number of W 1
k s are satisfied and so is the

required number of W 0
k s as K − i > K − y > K − j.

This can be clearly seen from the example on the 3rd hop kernel presented in Table

4.1. When the weights along the unique path for 0th and 3rd hop information are set, it

sets up all the weights. As 0th hop information is obtained by doing identity transforma-

tion at every layer and 3rd hop information is obtained by doing F (A) transformations

at every layer, all W 0
k s and W 1

k s are set, which would necessarily end up including all

the other hop information as all the weights are active. Similarly, it can be shown that

when hops 2 and 3 are included, no information from hops 0 and 1 are included.

4.3 Proposed Methodology

In this section, we propose a simple yet effective extension to GCNs by adding a fusion

component that allows them to capture multiple hop information effectively. We mo-

tivate and propose this component as a solution that will enable these graph kernels to

span the entire space of K-hop neighborhood. First, we show that the unified kernel is

a binomial combination of node and its’ neighborhood information. Thus, at each layer

k, a kth hop kernel is computed by a binomial combination. In light of this, we propose

a simple fusion layer that learns to linearly combine information from these binomial

bases to span the entire K-hop space.

64

4.3.1 Binomial basis

The K-hop unified propagation kernel defined in Eqn: 4.5 can be rolled out similar to

Eqn: 4.6 and be expressed as a K th order binomial in terms of node and it’s neighbors’

features for the linear activation case as given in Eqn: 4.13.

hK = (αI + F (A))Kh0ΠK
k=1Wk (4.13)

The higher order binomial term in Eqn: 4.13 when expanded assigns different

weights to different F (A)kh0 terms as seen in Eqn: 4.7. These weights correspond

to the binomial coefficients of the binomial series, (αI + F (A))K . For example, refer

to Eqns: 4.14 and 4.15 corresponding to a 2-hop and 3-hop kernel with α = I and

WK = I for simplicity. It can be seen that for the 2-hop kernel the weights are [1, 2, 1]

and for the 3-hop kernel it is [1, 3, 3, 1]. Thus, these recursive propagation kernels com-

bine different hop information weighed by the binomial coefficients.

h2 = h0 + 2F (A)h0 + F (A)2h0 (4.14)

h3 = h0 + 3F (A)h0 + 3F (A)2h0 + 3F (A)3h0 (4.15)

These weights induce a bias on the importance of each hop which again is a limi-

tation of the kernel design. Any such fixed bias over different hops cannot consistently

provide good performance across numerous datasets. In the limit of infinite data, we can

expect theWk parameters to correct these scaling factors induced by these biases. How-

ever, as with most graph-based SSL applications where the amount of available labeled

data for training is limited, an undesirable bias can result in a sub-optimal model.

Existing propagation kernels defined over K-hop information, extract relational in-

formation by performing convolution operations on different k-hop neighbors based

on their respective K th order binomial. As discussed earlier, biasing the importance

of information along with recursive weight dependencies hinder the model from learn-

ing relevant information from different hops. These limitations constrain the expressive

power of these models from spanning the entire space ofKth order neighborhood infor-

mation. Hence, it is restricted to only a subspace of all possible Kth order polynomial

defined on the neighborhood of nodes.

65

Figure 4.2: Illustration of information propagation in Fusion incorporated WL-kernels

4.3.2 Linear Fusion Component

To mitigate these issues with existing models, we propose a minimalistic component

for these models, a fusion component. This fusion component consists of parame-

ters to combine the information from the binomial basis defined by the different hop

information to effectively scale the entire space of a Kth order neighborhood.

We define the fusion component in Eqn: 4.16 as a linear weighted combination over

K-hop neighborhood space spanned by the binomial basis, hks ([h0,Φh0, . . . ,Φ
Kh0])

with coefficients, [θ0, θ1, . . . , θK]. The θ coefficients allow the neural network to ex-

plicitly learn the optimal combination of information from different hops. As the hks

are binomials, a parameterized linear combination of these binomials can obtain any

combination of the individual hop information. This can be verified by the fact that the

coefficients of the binomial equation which form the Pascal matrix are a non-singular

lower triangular matrix. Thus in the linear neural network case, we can see that the

binomial system of equations can be solved to obtain any combination of F (A) terms.

Continuing the non-differentiable illustration of information propagation in WL-kernels

from before, Figure: 4.2 depicts the addition of Fusion component to WL-kernels.

y = ΣK
k=0hkθk (4.16)

66

4.3.3 Fusion Graph Convolutional Network

We propose Fusion Graph Convolutional Network, F-GCN in equations in 4.17. F-GCN

is a minimalistic architecture that adds the fusion component defined in Eqn: 4.16 to

GCN defined in Eqn: 2.15. It can be seen to combine different kth hop information with

the fusion component. The fusion component mentioned in the penultimate line of the

equations in 4.17 fuses label scores from each propagation step. The fused label scores

are then normalized to make label prediction.

h0 = σk(XW1)

hk = σk(L̂hk−1Wk), ∀ k ∈ [1, K].

y = ΣK
k=0hkθk

L = softmax(y) or sigmoid(y)

(4.17)

The dimensions of hk, θk, Y ,W0,Wk are RN×d, Rd×L, RN×L, RF×d, Rd×d respectively.

F-GCN uses ReLU activations and a softmax label layer accompanied by a multi-class

cross entropy for multi-class classification problem or a sigmoid layer followed by a

binary cross entropy layer for multi-label classification problem. Since predictions are

obtained from every hop, we also subject h0 to a non-linear activation function with

weights same as W1 from h1.

The number of parameters in F-GCN is O(K ∗ d ∗ d + K ∗ d ∗ L), where the first

term is for GCN and the second is for the fusion component. GraphSAGE models

with no shared weights have O(K ∗ 2(d ∗ d)) or O(K ∗ 2(2d ∗ d)) for the summation

and concat combination respectively which is more than F-GCN as L < d typically.

This simple fusion component with fewer parameters provides additional benefits to

F-GCN besides explicitly allowing to capture different hop information. It provides for

additional direct gradient flow paths to each of the propagation steps allowing it to learn

better discriminative features at the lower hops too which also improves its chances of

mitigating vanishing gradient. F-GCN can be seen as a multi-resolution architecture

which simultaneously looks at information from different resolutions/hops and models

the correlations among them.

The fusion component is similar in spirit to the Chebyshev filters introduced in

Defferrard et al. (2016) for complete graph classification task. The primary difference is

67

that the Chebyshev filters learn coefficients to combine Chebyshev polynomials defined

over neighborhood information whereas in F-GCN the coefficients of the filter are used

to combine different binomials pertaining to different layers. Moreover, an additional

difference is that the Chebyshev polynomial basis is not associated with weights Wk

to filter kth hop information which can potentially enable the model to learn complex

non-linear feature basis. F-GCN also enjoys the benefit of the re-normalization trick

of GCN that stabilizes the learning to diminish the effect of vanishing or exploding

gradient problems associated with training neural networks.

Note that existing attention mechanisms (Vaswani et al., 2017) are typically defined

for a positive combination of information. They have a restricted scoring range based

on the activation functions used. In our case, since we needed a mechanism that can

scale the amount of addition and subtraction of information from different binomial

bases, we opted for the simple linear weighted combination layer.

4.4 Relation to other existing works

Being motivated by the problem that the use of the same GCN aggregation function

across datasets results in having the same local information retain probability, Xu et al.

(2018) proposed jump connections that learn the importance of different layers. They

use a random walk based analysis to show that with GCNs, neighbors from different

hops have the same effect on the node irrespective of network properties. With our

unified perspective of different graph models as binomial graph kernels, we can make

a broader claim that irrespective of the aggregation function there exists a static bias on

the importance of different hops.

In order to overcome this issue, Xu et al. (2018) proposed jump connections mod-

ule with three alternatives viz, CONCAT, MaxPooling and a Gating variant that com-

bines information from different layers. Though Xu et al. (2018) shows proof of how a

’learned’ Maxpooling or Gating based model corresponds to a mixture of a K-step ran-

dom walk, they do not provide analysis on the learn-ability of these models. As argued

in Xu et al. (2018) Maxpooling and Attention layers are more potent than the CONCAT

layer as they are adaptive to nodes. However, with our analysis, it can be seen that for

binomial graph kernels, CONCAT is more powerful than MaxPooling and Attention

68

models. Adding a Maxpooling layer to GCN still does not provide a direct independent

regulating path to each layer. Though attention function provides a direct regulatory

path, the one proposed can only be used for a positive combination of information and

is not suited for binomial functions as discussed in the previous section.

Though Xu et al. (2018) argued CONCAT based model as weak it achieved superior

performance in their experiments. Xu et al. (2018)’s CONCAT layer is the same as our

linear fusion component 1. Our well-founded analysis and motivation for the linear

fusion component provide a clear rationale and support for the superior experimental

benefits obtained with CONCAT/linear fusion both in our work and in Xu et al. (2018).

Gilmer et al. (2017) proposed Neural Message Passing network framework that

views different neural nets for graphs abstractly as message exchanges between nodes

and message aggregation across nodes. They were defined for graph level classifica-

tion tasks. Gilmer et al. (2017)’s framework for message passing is too abstract for

any detailed analysis for node level tasks. Hence, we proposed a unified perspective of

existing models as binomial graph kernels. This unified view gave us a new perspec-

tive of GCN’s as binomial kernels over the current understanding of GCNs as stacked

one layer Chebyshev Nets. It led us to derive a simple solution from improving the

representation capacity of differentiable WL-based kernels. Moreover, it further aided

in understanding why CONCAT (fusion) models are more powerful than the popular

normalized attention mechanism.

4.5 Experiment results

We run detailed experiment to compare the proposed F-GCN model against GCNs with

skip connections and GraphSAGE models with CONCAT combination. We follow the

same experiment setup, evaluation metrics and implementation details as used with

experiments for HOPF as in Section: 3.8. We evaluate F-GCN on the same set of

datasets as HOPF but except for Reddit dataset. For the same hyperparameter setting,

F-GCN’s model was larger to be held in a 12GB GPU and henc we don’t report for

the same. In the following experimental analysis, F-GCN comes out as the consistent

winner across 9/10 datasets losing out on only one dataset by an absolute 0.12 points

1Note that the work of Xu et al. (2018) appeared in parallel to ours in Arxiv, precisely our work
appeared in Arxiv 11 days before theirs.

69

from the best.

Table 4.2: Transductive Experiments

Datasets Aggregate measures

Models Blog FB Movie Cora Citeseer Cora2 Pubmed Yeast Human Amazon Shortfall Rank

BL_NODE 37.929 64.683 50.329 59.852 65.196 40.583 83.682 59.681 41.111 64.121 9.431 5
GCN 39.101 63.682 51.194 77.523 71.903 63.152 86.432 60.34 62.057 73.746 1.235 2.8
GS-MEAN 39.433 62.651 50.557 76.821 70.967 62.8 84.23 59.771 63.753 68.266 2.223 3.8
GS-MAX 40.275 64.571 50.569 73.272 71.39 53.476 85.087 62.727 65.068 70.302 2.474 2.9
GS-LSTM 37.744 64.619 41.261 65.73 63.788 38.617 82.577 58.353 64.231 68.024 7.653 5.2
F-GCN 39.069 64.857 52.021 79.039 72.266 63.993 86.5432 62.8479 65.538 74.097 0.121 1.3

Table 4.3: Inductive learning experiment with Human dataset:

NODE GCN GS-MEAN GS-MAX GS-LSTM F-GCN

PPI 44.51 88.585 79.634 78.054 87.111 88.942

F-GCN Vs. NODE: F-GCN significantly outperforms the NODE model across the

board.

F-GCN Vs. GCN: F-GCN improves over GCN in the inductive setup and outper-

forms GCN on nine of the ten datasets in the transductive setup while being comparable

to the other one. F-GCN is seem to improve over GCN by upto 3.5 percentage points

in Human dataset. On an average across all datasets, F-GCN provides 1.1 percentage

points improvement.

F-GCN Vs GraphSAGE: F-GCN outperforms GraphSAGE variants across the

board except for one where it slightly under-performs. GraphSAGE models have higher

flexibility compared to GCNs as they have no shared weights. This explains the sig-

nificant experimental improvement benefited with concatenation as noted in Hamilton

et al. (2017). F-GCN significantly improves over GraphSAGE models in Human and

Amazon dataset. There is no single winner among GraphSAGE models across datasets.

Different variants champion in different datasets among them. Despite having a single

simple aggregation function, F-GCN easily champions over all of them combined ex-

cept on BLOG. This suggests that the flexibility to independently regulate information

is necessary irrespective of the complex aggregation functions used. The mild lack in

representation capacity holds back GraphSAGE from achieving F-GCN’s performance.

Statistical Significance:We also evaluated the statistical significance of the overall

results and the F-GCN model across multiple datasets with Friedman’s and Wilcoxon

sigend rank test (Demšar, 2006). With Friedman’s test, we reject the null hypothesis

70

that all models are similar with p<0.05 on the transductive setup. F-GCN clearly beats

the NODE only model and GS-LSTM on all datasets. With Wilcoxon signed-rank test,

F-GCN > GCN with p < 0.01, F-GCN > GS-Mean with p < 0.01, F-GCN > GS-Max

with p < 0.02 and F-GCN > GS-Max with p < 0.01

Overall, F-GCN improves over the state-of-the-art results on nine datasets while be-

ing extremely competitive on the other one. Though the proposed fusion component, in

theory, is an optimal solution for GCNs with linear activations, they also seem to be ex-

perimentally beneficial for GCNs with the piece-wise linear ReLU activations too. Such

generalization is not unrealistic in practice, as it is often observed that such generaliza-

tion of insights from a relaxed linear analysis seems to provide significant clarity and

potential improvements on the non-linear front (Saxe et al., 2013; Kawaguchi, 2016;

Hardt and Ma, 2016; Orabona and Tommasi, 2017).

F-GCN robustly captures mutli-hop information In real life datasets, there exists a

varying amount of information among the interactions between the node and its differ-

ent distant hop neighbors. An ideal relational model should be able to efficiently capture

relevant information while filtering out the increasing noise induced by the expanding

neighborhood size with each hop. We demonstrate F-GCN’s capability in Fig: 4.3 to

robustly capture information from multiple hops on different datasets with a varied in-

formation pattern. We selected only those datasets that have high relevant relational

information for the classification task. These were datasets that obtained significant

improvement on results over the node only classifier with just the inclusion of the first

hop information.

Figure 4.3: F-GCN performance with hops 1-4

71

In the citation networks (Cora and Cora2), it can be seen that the performances seem

to saturate after two hops and with one hop in the Amazon, co-purchase network. De-

spite that, F-GCN with its capability to selectively regulate information from multiple

hops remains unaffected by the noise induced by considering additional hops.

In contrast, there is a significant increase in performance with the consideration

of nodes’ higher order neighborhood interactions for the inductive experiment on the

protein-protein interaction dataset (HUMAN). In the Human dataset, F-GCN was able

to extract relevant information and achieve remarkable performance gain from further

hops despite the dataset’s high average degree.

F-GCN Vs NIP-MEAN F-GCN has a direct compuation path from h0 to the label layer

and hence it doesn’t succumb to NIM issue. Table: 4.4 provides a results comparison

among them. F-GCN beats NIP-MEAN on 8/10 datasets with NIP-MEAN outperform-

ing F-GCN by more than 3% points on Human dataset. F-GCN has additional power to

better capture multi-hop neighborhood information more effectively than NIP-MEAN

model and thus results in providing more consistent results.

Earlier in 3.8, we noted that NIP kernel’s ability to learn the correlation between

the node and every other neighborhood feature might be important for the Human

dataset. This is verified when we added Fusion component to the NIP-MEAN kernel,

the model further improved NIP-MEAN’s performance by 2.127% absolute points to

achieve 70.815. However, on other datasets the results were not significantly different.

Table 4.4: FGCN Vs NIP kernel

Models Blog FB Movie Cora Citeseer Cora2 Pubmed Yeast Human Amazon

NIP-MEAN 39.433 64.286 51.316 76.932 71.148 63.901 86.203 61.583 68.688 69.136
F-GCN 39.069 64.857 52.021 79.039 72.266 63.993 86.5432 62.8479 65.538 74.097

F-GCN benefits from Iterative learning The performance of F-GCN model can be

further boosted by incorporating our proposed iterative learning component from the

section: 3.4. We call this model as I-F-GCN. The performance benefits of iterative

learning are provided in Table: 4.5 on datasets, where we observed significant improve-

ments with Iterative models as discussed in the section: 3.9.4. I-F-GCN obtains an

absolute improvement of 1.28-3.11% points over F-GCN and the CONCAT model pro-

posed in our parallel work, Xu et al. (2018).

72

Table 4.5: I-F-GCN Vs FGCN

Cora2 Yeast Amazon

F-GCN 63.993 62.8479 74.097
I-F-GCN 65.27 65.65 77.2086

Comparison of Different Iterative Fusion models Though I-F-GCN provided consid-

erable improvements over F-GCN, there seems to be no single winner among I-F-GCN

and I-NIP-MEAN when compared with no additional hyper-parameter tuning. The

results are available in Table: 4.6. I-FGCN without any additional Hyper-parameter

tuning performs similar to I-NIP-MEAN on Cora2 and Amazon. However, there is a

4% drop in performance on the Yeast dataset. This can be attributed to the difference in

choice of base graph kernel, i.e. GCN over NIP-MEAN. To understand the performance

differences induced by this choice of graph kernel, we also evaluated I-F-NIP-MEAN,

an Iterative Fusion model with NIP-MEAN as the base graph kernel. Component wise

results for I-F-NIP-MEAN is available in Table: 4.7.

Table 4.6: I-F-GCN Vs I-F-NIP-MEAN

Cora2 Yeast Amazon

I-NIP-MEAN 66.23 69.917 75.045
I-F-GCN 65.27 65.65 77.209
I-F-NIP-MEAN 65.802 68.556 72.804

Jointly, we can argue that NIP-MEAN based Iterative models have a significant

edge on the Yeast dataset over GCN based fusion model, I-F-GCN. Note, that though

the linear fusion component in I-F-GCN provides an optimal first-order polynomial

combination of the basis, the shortfall in performance against I-NIP-MEAN shows that

powerful higher-order polynomial combination of the basis is required. A multi-layer

Fusion step can a possible solution for this issue.

Table 4.7: NIP-MEAN with Fusion and Iterative leanring

Cora2 Yeast Amazon

NIP-MEAN 63.901 61.583 69.136
F-NIP-MEAN 64.32 62.29 68.67
I-F-NIP-MEAN 65.802 68.556 72.804

73

CHAPTER 5

Conclusion and Future Works

We proposed HOPF, a novel framework for Collective Classification that combines dif-

ferentiable graph kernels with an iterative stage. Deep learning models for relational

learning tasks can now leverage HOPF to use complete information from larger neigh-

borhoods without succumbing to over-parameterization and memory constraints. HOPF

can be improved by reducing erroneous information propagation through the use of

pseudo-label information. It is always not the case that with every iterative inference

step, the label estimates improve. Two classical approaches to solve this would be to

(i) committing only high confidence labels as proposed in cautious ICA (McDowell

et al., 2007) and (ii) Adding ghost edges to increase the supervised information flow to

unlabeled nodes (Gallagher et al., 2008). Adaptions of these two approaches to HOPF

would be highly impactful.

Through HOPF’s modular framework we were able to better comprehend and com-

pare numerous differentiable graph kernels. The generic kernel led us to see the hitherto

issue of Node Information morphing and also allowed us to design solutions to fix the

same with Node Information Preserving Kernel. Similarly, HOPF’ generic graph kernel

can be of help in designing newer and better graph kernels. For example, all the fixed

and hand-crafted component which are unexplored currently, can now be parameterized

and learned with stochastic gradient descent along with the other parameters of GCNs.

The node’s importance (α), neighbor’s importance (β) and edge weights (F (A)) can be

learned in this manner.

HOPF can be further extended for unsupervised tasks by incorporating structural

regularization with Laplacian smoothing on the embedding space. With Laplacian reg-

ularizers, HOPF can be used for joint training of both Collective Classification and

unsupervised network re-constructions loss which leads to obtaining superior node fea-

tures that captures both attribute distribution in the neighborhood and the node’s local

network structure. Additionally, with the joint training setup, we can also parameterize

higher order Laplacian regularizers and learn them with too.

In F-GCN work, we showed that differentiable recursive graph kernels are higher

order binomial combinations of node and neighborhood information. Through analy-

sis, we pointed out that such powerful recursively computed binomial functions lack

the representation capacity to capture multi-hop neighborhood information effectively.

Besides highlighting this critical issue, we also proposed a minimalist fusion compo-

nent that can alleviate this issue. The current fusion component though learned, is the

same for all nodes. This call for a new attention mechanism that can adaptively gives

importance to information from multiple hops specific to binomial graph kernels.

76

REFERENCES

1. Belkin, M., P. Niyogi, and V. Sindhwani (2006). Manifold regularization: A geomet-
ric framework for learning from labeled and unlabeled examples. Journal of machine
learning research, 7(Nov), 2399–2434.

2. Bhattacharya, I. and L. Getoor (2007). Collective entity resolution in relational data.
ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1), 5.

3. Bruna, J., W. Zaremba, A. Szlam, and Y. LeCun (2013). Spectral networks and
locally connected networks on graphs. arXiv preprint arXiv:1312.6203.

4. Cantador, I., P. Brusilovsky, and T. Kuflik, 2nd workshop on information heterogene-
ity and fusion in recommender systems (hetrec 2011). In Proceedings of the 5th ACM
conference on Recommender systems, RecSys 2011. ACM, New York, NY, USA, 2011.

5. Cavallari, S., V. W. Zheng, H. Cai, K. C.-C. Chang, and E. Cambria, Learning
community embedding with community detection and node embedding on graphs. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Manage-
ment, 377–386. ACM, 2017.

6. Chakrabarti, S., B. Dom, and P. Indyk, Enhanced hypertext categorization using hy-
perlinks. In ACM SIGMOD Record, volume 27, 307–318. ACM, 1998.

7. Chapelle, O., B. Scholkopf, and A. Zien (2009). Semi-supervised learning (chapelle,
o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks, 20(3),
542–542.

8. Cho, K., B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio (2014). Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

9. Craven, M., A. McCallum, D. PiPasquo, T. Mitchell, and D. Freitag (1998). Learn-
ing to extract symbolic knowledge from the world wide web. Technical report,
Carnegie-mellon univ pittsburgh pa school of computer Science.

10. Defferrard, M., X. Bresson, and P. Vandergheynst, Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information
Processing Systems, 3844–3852. 2016.

11. Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal
of Machine learning research, 7(Jan), 1–30.

12. Frasconi, P., M. Gori, and A. Sperduti (1998). A general framework for adaptive
processing of data structures. IEEE transactions on Neural Networks, 9(5), 768–786.

13. Gallagher, B. and T. Eliassi-Rad (2010). Leveraging label-independent features for
classification in sparsely labeled networks: An empirical study. Advances in Social
Network Mining and Analysis, 1–19.

77

14. Gallagher, B., H. Tong, T. Eliassi-Rad, and C. Faloutsos, Using ghost edges for clas-
sification in sparsely labeled networks. In Proceedings of the 14th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, 256–264. ACM, 2008.

15. Gilmer, J., S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl (2017). Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212.

16. Glorot, X. and Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 249–256. 2010.

17. Gori, M., G. Monfardini, and F. Scarselli, A new model for learning in graph do-
mains. In Neural Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE International
Joint Conference on, volume 2, 729–734. IEEE, 2005.

18. Hamilton, W. L., Z. Ying, and J. Leskovec, Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA, 1025–1035. 2017. URL http://papers.nips.cc/paper/6703-
inductive-representation-learning-on-large-graphs.

19. Hardt, M. and T. Ma (2016). Identity matters in deep learning. arXiv preprint
arXiv:1611.04231.

20. Hatzis, C. and D. Page, 2001 KDD cup challenge Dataset. In
pages.cs.wisc.edu/ dpage/kddcup2001. KDD, 2001.

21. He, K., X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
770–778. 2016.

22. Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural compu-
tation, 9(8), 1735–1780.

23. Kawaguchi, K., Deep learning without poor local minima. In Advances in Neural
Information Processing Systems, 586–594. 2016.

24. Kingma, D. P. and J. Ba (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980. URL http://arxiv.org/abs/1412.6980.

25. Kipf, T. N. and M. Welling (2016). Semi-supervised classification with graph convolu-
tional networks. CoRR, abs/1609.02907. URL http://arxiv.org/abs/1609.
02907.

26. Lancichinetti, A., S. Fortunato, and J. Kertész (2009). Detecting the overlapping and
hierarchical community structure in complex networks. New Journal of Physics, 11(3),
033015.

27. Leskovec, J. and R. Sosič (2016). Snap: A general-purpose network analysis and
graph-mining library. ACM Trans. Intell. Syst. Technol., 8(1), 1:1–1:20. ISSN 2157-
6904. URL http://doi.acm.org/10.1145/2898361.

28. Levy, O. and Y. Goldberg, Neural word embedding as implicit matrix factorization. In
Advances in neural information processing systems, 2177–2185. 2014.

78

http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://doi.acm.org/10.1145/2898361

29. Li, Y., D. Tarlow, M. Brockschmidt, and R. Zemel (2015). Gated graph sequence
neural networks. arXiv preprint arXiv:1511.05493.

30. Lu, Q. and L. Getoor, Link-based classification. In Proceedings of the 20th Interna-
tional Conference on Machine Learning (ICML-03), 496–503. 2003.

31. Macskassy, S. A. and F. Provost (2003). A simple relational classifier. Technical
report, NEW YORK UNIV NY STERN SCHOOL OF BUSINESS.

32. Mccallum, A., CORA Research Paper Classification Dataset. In peo-
ple.cs.umass.edu/ mccallum/data.html. KDD, 2001.

33. McCallum, A. K., K. Nigam, J. Rennie, and K. Seymore (2000). Automating the
construction of internet portals with machine learning. Information Retrieval, 3(2),
127–163.

34. McDaid, A. F., D. Greene, and N. Hurley (2011). Normalized mutual information to
evaluate overlapping community finding algorithms. arXiv preprint arXiv:1110.2515.

35. McDowell, L. K. and D. W. Aha, Semi-supervised collective classification via hybrid
label regularization. In Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. 2012. URL
http://icml.cc/2012/papers/513.pdf.

36. McDowell, L. K., K. M. Gupta, and D. W. Aha, Cautious inference in collective
classification. In AAAI, volume 7, 596–601. 2007.

37. Moore, J. and J. Neville, Deep collective inference. In AAAI, 2364–2372. 2017.

38. Morris, C., K. Kersting, and P. Mutzel, Glocalized weisfeiler-lehman graph kernels:
Global-local feature maps of graphs. In Data Mining (ICDM), 2017 IEEE International
Conference on, 327–336. IEEE, 2017.

39. Namata, G., B. London, L. Getoor, B. Huang, and U. EDU, Query-driven active
surveying for collective classification. In 10th International Workshop on Mining and
Learning with Graphs. 2012.

40. Neumann, M., R. Garnett, C. Bauckhage, and K. Kersting (2016). Propagation ker-
nels: efficient graph kernels from propagated information. Machine Learning, 102(2),
209–245.

41. Neville, J. and D. Jensen, Iterative classification in relational data. In Proc. AAAI-2000
Workshop on Learning Statistical Models from Relational Data, 13–20. 2000.

42. Neville, J. and D. Jensen, Collective classification with relational dependency net-
works. In Proceedings of the Second International Workshop on Multi-Relational Data
Mining, 77–91. 2003.

43. Orabona, F. and T. Tommasi, Training deep networks without learning rates through
coin betting. In Advances in Neural Information Processing Systems, 2160–2170. 2017.

44. Perozzi, B., R. Al-Rfou, and S. Skiena, Deepwalk: Online learning of social rep-
resentations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, 701–710. ACM, 2014.

79

http://icml.cc/2012/papers/513.pdf

45. Pfeiffer III, J. J., J. Neville, and P. N. Bennett, Overcoming relational learning biases
to accurately predict preferences in large scale networks. In Proceedings of the 24th
International Conference on World Wide Web, 853–863. International World Wide Web
Conferences Steering Committee, 2015.

46. Poultney, C., S. Chopra, Y. L. Cun, et al., Efficient learning of sparse representations
with an energy-based model. In Advances in neural information processing systems,
1137–1144. 2007.

47. Qiu, J., Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang (2017). Network embedding
as matrix factorization: Unifyingdeepwalk, line, pte, and node2vec. arXiv preprint
arXiv:1710.02971.

48. Rozemberczki, B., R. Davies, R. Sarkar, and C. Sutton (2018). Gemsec: Graph
embedding with self clustering. arXiv preprint arXiv:1802.03997.

49. Saxe, A. M., J. L. McClelland, and S. Ganguli (2013). Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120.

50. Scarselli, F., M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini (2009). The
graph neural network model. IEEE Transactions on Neural Networks, 20(1), 61–80.

51. Sen P, M., Galileo, L. Getoor, B. Galligher, and T. Eliassi-Rad (2008). Collective
classification in network data. AI magazine, 29(3), 93.

52. Shervashidze, N., P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and K. M. Borg-
wardt (2011). Weisfeiler-lehman graph kernels. Journal of Machine Learning Re-
search, 12(Sep), 2539–2561.

53. Smola, A. J. and R. Kondor, Kernels and regularization on graphs. In Learning theory
and kernel machines. Springer, 2003, 144–158.

54. Stark, C., B.-J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers
(2006). Biogrid: a general repository for interaction datasets. Nucleic acids research,
34(suppl_1), D535–D539.

55. Subbanna, N., D. Precup, and T. Arbel, Iterative multilevel mrf leveraging context
and voxel information for brain tumour segmentation in mri. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 400–405. 2014.

56. Sun, W., A. Venkatraman, B. Boots, and J. A. Bagnell, Learning to filter with pre-
dictive state inference machines. In International Conference on Machine Learning,
1197–1205. 2016.

57. Tibshirani, R., G. Walther, and T. Hastie (2001). Estimating the number of clusters
in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 63(2), 411–423.

58. Tong, H., C. Faloutsos, and J.-Y. Pan, Fast random walk with restart and its applica-
tions. In Proceedings of the Sixth International Conference on Data Mining, ICDM ’06,
613–622. IEEE Computer Society, Washington, DC, USA, 2006. ISBN 0-7695-2701-9.
URL https://doi.org/10.1109/ICDM.2006.70.

59. Tu, C., W. Zhang, Z. Liu, and M. Sun, Max-margin deepwalk: Discriminative learning
of network representation. In IJCAI, 3889–3895. 2016.

80

https://doi.org/10.1109/ICDM.2006.70

60. Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, Attention is all you need. In Advances in Neural Information Pro-
cessing Systems, 5998–6008. 2017.

61. Wang, S., J. Tang, C. Aggarwal, and H. Liu, Linked document embedding for classi-
fication. In Proceedings of the 25th ACM International on Conference on Information
and Knowledge Management, 115–124. ACM, 2016.

62. Wang, X., P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, Community preserving
network embedding. In AAAI, 203–209. 2017.

63. Wang, X., L. Tang, H. Gao, and H. Liu, Discovering overlapping groups in social
media. In Data Mining (ICDM), 2010 IEEE 10th International Conference on, 569–
578. IEEE, 2010.

64. Weisfeiler, B. and A. Lehman (1968). A reduction of a graph to a canonical form and
an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia, 2(9),
12–16.

65. Xu, K., C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka (2018).
Representation learning on graphs with jumping knowledge networks. arXiv preprint
arXiv:1806.03536.

66. Yang, C., Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, Network representation learning
with rich text information. In IJCAI, 2111–2117. 2015.

67. Yang, Z., W. W. Cohen, and R. Salakhutdinov (2016a). Revisiting semi-supervised
learning with graph embeddings. arXiv preprint arXiv:1603.08861.

68. Yang, Z., W. W. Cohen, and R. Salakhutdinov, Revisiting semi-supervised learning
with graph embeddings. In Proceedings of the 33nd International Conference on Ma-
chine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, 40–48. 2016b.
URL http://jmlr.org/proceedings/papers/v48/yanga16.html.

69. Yu, Q. and D. A. Clausi, Combining local and global features for image segmentation
using iterative classification and region merging. In Computer and Robot Vision, 2005.
Proceedings. The 2nd Canadian Conference on, 579–586. IEEE, 2005.

70. Zhu, X. and Z. Ghahramani (2002). Learning from labeled and unlabeled data with
label propagation.

81

http://jmlr.org/proceedings/papers/v48/yanga16.html

PUBLICATIONS

List of papers based on thesis

1. Priyesh Vijayan, Yash Chandak, Mitesh Khapra, Srinivasan Parthasarathy and
Balaraman Ravindran; HOPF: Higher Order Propagation Framework for col-
lective classification; Eighth International workshop on Statistical Relational AI
co-located with IJCAI 2018, Stockholm, Sweden.

2. Priyesh Vijayan, Yash Chandak, Mitesh Khapra, Srinivasan Parthasarathy and
Balaraman Ravindran; Fusion Graph Convolutional Networks; Fourteenth In-
ternational workshop on Mining and Learning with Graphs co-located with KDD
2018, London, UK.

List of papers not based on thesis

1. Anasua Mitra*, Priyesh Vijayan*, Srinivasan Parthasarathy and Balaraman Ravin-
dran; Learning clusterable graph embeddings with Semi-Supervised NMF;
First International workshop on Relational Representation learning co-located
with NIPS 2018, Montreal, Canada. (*equal contribution)

83

CURRICULUM VITAE

Full Name Priyesh Vijayan

Date of Birth 12-05-1992

E-mail priyesh@cse.iitm.ac.in

priyeshvellore@gmail.com

Website https://priyeshv.github.io

Education M.S. by Research (CSE)

Indian Institute of Technology, Madras

Permanent Address Door no: 6

Rajaji street, Bharathi Nagar Extn,

Katapdi, Vellore

Tamil Nadu - 632007.

85

https://priyeshv.github.io

GENERAL TEST COMMITTEE

Chairman Dr. P Sreenivasa Kumar

Department of Computer Science and Engineering

Indian Institute of Technology, Madras.

Guide Dr. Balaraman Ravindran

Department of Computer Science and Engineering

Indian Institute of Technology, Madras.

Members Dr. Mitesh Khapra

Department of Computer Science and Engineering

Indian Institute of Technology, Madras.

Dr. A.N. Rajagopalan

Department of Electrical Engineering

Indian Institute of Technology, Madras.

87

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	Introduction
	Network Representation learning
	Collective Classification
	Contributions of this Thesis
	Higher Order Propagation Framework
	Fusion Graph Convolutional Networks

	Outline of the thesis

	Background and Related works
	Notations
	Graph-based Semi-Supervised learning
	Spectral Kernels
	Regularization with Spectral kernels
	Convolutions with Spectral kernels
	Chebyshev Neural Network

	Graph Convolutional Networks
	Relation to Weisfeiler-Lehman (WL) algorithm

	GraphSAGE
	Iterative Collective classification Algorithm
	Semi-Supervised Non-Negative Matrix Factorization for clusterable graph embeddings (SS-NMF)
	Notations for SS-NMF
	SS-NMF:Semi-Supervised NMF model
	Optimization
	Experiments

	Higher Order Propagation Framework
	Generic propagation kernel
	Relation to existing works:

	Node Information Morphing (NIM): Analysis
	Node Information Preserving models
	Higher Order Propagation Framework: HOPF
	Iterative NIP Mean Kernel: I-NIP-MEAN
	Scalability analysis:
	Miscellaneous related works
	Experiments
	Dataset details
	Experiment setup:
	Implementation details
	Models compared:

	Results and Discussions
	A measure of consistency across datasets
	Baselines Vs. Collective Classification (CC) models
	WL-Kernels Vs NIP-Kernels
	Iterative inference models Vs. Differentiable kernels
	Inductive learning on Human dataset

	Fusion Graph Convolutional Networks
	Unified Recursive Graph Propagation Kernel
	Lack of independent regulatory paths to different hops
	Inclusion of bias
	Inclusion of skip connections
	Inclusion of different weights

	Proposed Methodology
	Binomial basis
	Linear Fusion Component
	Fusion Graph Convolutional Network

	Relation to other existing works
	Experiment results

	Conclusion and Future Works

