
Semi-supervised learning for clusterable graph
embeddings with NMF

Priyesh Vijayan1∗, Anasua Mitra2, Srinivasan Parthasarathy3 and Balaraman Ravindran1

1Dept. of CSE and Robert Bosch Centre for Data Science and AI
Indian Institute of Technology Madras, India

2 Dept. of CSE, Indian Institute of Technology Guwahati, India
3 Dept. of CSE and Dept. of Biomedical Informatics, Ohio State University, USA

Abstract

We propose a Semi-Supervised Learning (SSL) model for learning cluster invariant
node representations that enforce high label smoothness within the clusters. This
work focuses on learning semi-supervised node representations in non-attributed
graphs. Specifically we compare and analyze different SSL models that use Non-
Negative Matrix Factorization. The clustering assumption of SSL has not been
explored much in the network representation learning literature. We show that
explicitly encoding the clustering requirement provides improved performance
on node classification task across a variety of datasets. Further, we demonstrate
the superior clusterability of the learned node representations quantitatively with
clustering task and qualitatively with t-SNE visualizations.

1 Introduction
Chapelle et al. (2009) mentions that efficient SSL requires that the data lie in (1) a low-dimensional
manifold, (2) exhibit high label smoothness characterized by homogeneous high-density clusters
of the same class (3) which are well separated from the clusters of different classes. Here, we
focus on graph based SSL for node classification in non-attributed graphs to learn clusterable node
representations. We propose a novel Semi-Supervised Non-negative Matrix Factorization (SS-NMF)
model that learns cluster invariant node representations that enhance high label smoothness within
these learned clusters. Clusterability though a well known prior, was either largely ignored or
not explicitly handled in SSL. To the best of our knowledge, we are the first to explicitly learn
semi-supervised cluster invariant representations in the network representation learning setup.

2 Proposed Work
2.1 Notations

Let, G = (V,A, Y ) be a networked data, where V is the set of vertices and A ∈ RN×N is the matrix
of (un)weighted, (un)directed edges. C denotes the set of q possible classes. Y ∈ Rq×N is the one-hot
representation of classes for all nodes. We have L labeled data {(i, Yi)}Li=1 and UL unlabeled data
{(i)}L+UL

i=L+1 with total number of nodes N = L+ UL. m is the dimension of representation space.
Let, DN×N be the diagonal degree matrix of the adjacency matrix A defined as dii =

∑
j ai,j. Thus,

the unnormalized Laplacian operator on the graph G can be defined as LN×N = D −A.

2.2 SS-NMF Framework

In this section, we will build the proposed semi-supervised model step by step.

∗corresponding author: priyesh@cse.iitm.ac.in

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



Learning network structure by encoding local context: The rudimentary component of
the model is that which learns locally invariant node representations, i.e., nodes which are connected
have similar representations. We obtain locally invariant representations by factorizing a proximity
matrix that encodes the similarity between the nodes. Herein, we consider the Pointwise Mutual
Information matrix, S, defined in Tu et al. (2016) for Matrix Factorized DeepWalk (MFDW) model.
It is the average transition probability in a window size of (t). Herein, different from Tu et al. (2016),
we resort to Non-negative Matrix Factorization framework as the proximity matrix is all positive.
We factorize the proximity S into two non-negative basis matrices - the node representation matrix
U ∈ Rm×N and the context/ neighbourhood representation matrix M ∈ Rm×N as given below.

L1 = min
M,U
‖S − UTM‖2 :M ≥ 0, U ≥ 0 (1)

Encoding supervision knowledge: In order to learn semi-supervised representations, we need to
jointly factorize the label matrix, Y along with S. We define the label matrix factorization term in
Eqn: 2. Where W ∈ Rq×N is the weight penalty matrix that zeros out all the label information of
test instances. Specifically, Wi is equal to 0 if the corresponding Yi is unknown and 1 otherwise. � is
the hadamard or element-wise multiplication. Q ∈ Rq×m is the label basis matrix. The supervision
component is defined as follows:

L2 = min
Q,U
‖W � (Y −QU)‖2 : Q ≥ 0, U ≥ 0 (2)

Encoding cluster level label smoothness: Here, we define a novel component that allows for learn-
ing cluster invariant representation. In essence, it allows the model to learn clusterable representations
such that there is high label smoothness within the cluster. This component primarily comprises of
two components:

• Learn cluster assignment: Let, H ∈ Rk×N represents the cluster membership indica-
tor matrix defined for k number of clusters. We obtain H by projecting node embed-
dings, U on cluster basis, H = CU . We can control the soft assignment to clusters with
Trace(HHT ) = N term. By setting HHT = I , we relax the block diagonal assignments
to orthogonal assignments similar to Wang et al. (2017).

• Encode Cluster Invariance Property (C.I.P): We enforce this constraint by applying
Laplacian regularization on H with label similarity based proximity matrix, E. We define
the label similarity network defined over train data as E = (W � Y )T (W � Y ) ∈ RN×N ,
where L(E) = D − E is the unnormalized Laplacian operator on E.

The label based similarity matrix introduces new edges between nodes of similar labels which may
be far away or not even connected in the original network, S. In this way, clusters can capture global
information. Unlike models which enforce explicit Laplacian regularization on the embedding space
or label space, we enforce this constraint on an abstract space, clusters.

Cluster invariant representations that enforce similar cluster assignments to nodes of same/ similar
labels are obtained in Eqn: 3. There is a circular enforcement between H and U , i.e., U learns from
H , H implicitly learns from U and H explicitly learns from the cluster overlap regularization term.
Therefore, H pushes two nodes with same labels and similar neighbourhood together into the same
cluster and ensures that these two nodes have similar representations.

L3 = min
H,C,U

β‖H − CU‖2 + φTr{HL(E)HT }+ ζ‖HHT − I‖2 : H ≥ 0 (3)

2.3 Optimization

In SS-NMF, the node representations, U are learned by jointly factorizing the local neighbourhood
proximity matrix S, label matrix Y and inferred cluster assignment matrix H . We learn SS-NMF by
combining the objective terms corresponding to each component along with L2 regularization on the
learned factor matrices as given below:

L = αL1 + θL2 + L3 + λ(L2reg) :M,U,Q,C,H ≥ 0 (4)

α, β, θ, ζ, φ, λ are hyperparameters controlling the importance of respective terms in equation. Multi-
plicative update rules can be derived for M,U,C,Q,H to minimize the above objective function as
in Lee and Seung (2001).
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3 Experiments

3.1 Baselines & Related Work

The state of the art methods for semi-supervised classification on non-attributed graphs are limited
only to MaxMargin-DeepWalk (MMDW) Tu et al. (2016) and (Planetoid) Yang et al. (2016).
Besides, we also introduce two more semi-supervised baselines built on top of the unsupervised
community preserving embedding model (MNMF) Wang et al. (2017) and the Matrix Factorization
version of DeepWalk (MFDW) Tu et al. (2016) viz: MNMFL and MFDWL respectively, where the
original objectives are jointly factorized with label matrix as in Eqn: 2. For reference’s sake, we have
also included random walk sampling based DeepWalk (DW) Perozzi et al. (2014).

Planetoid was defined for multi-class classification problem on stratified labelled set (which can be
unrealistic). We empirically observed Planetoid to perform poorly in comparison to other baselines
when the labelled set is randomly drawn (not reported here) and is not directly extensible for multi-
label problems. Hence, we do not report results for Planetoid here, rather we define a similar semi-
supervised NMF model, MF-Planetoid (MF-Plan) (refer to Appendix for details) with Planetoid’s
semi-supervised learning objective i.e., explicitly enforcing embeddings of nodes of the same label
to be similar. To be fair here, we merely report the comparison of our model, SSNMF against the
original Planetoid model on their train/ test split below in terms of Micro-F1 scores in percentage:
a) On Cora dataset; Planetoid: 69.1 and SSNMF: 78.8 b) On Citeseer dataset; Planetoid: 49.3 and
SSNMF: 50.6 c) On Pubmed dataset; Planetoid: 66.4 and SSNMF: 79.6. We found balanced class
distribution to be beneficial for our model as we obtain extraordinary performance improvement 10%
on Cora and 13% on Pubmed. Albeit, we primarily report results in Table: 1, 2 on a realistic setup
with randomly sampled train-test data. Dataset details are provided in the Appendix.

3.2 Node classification

We report classification performance with Micro-F1 scores averaged over 5 runs with randomly
sampled train and test sets. For all models, we learn an external Logistic Regression classifier (LR)
that makes label predictions from the model’s learned node representations. Though we can obtain
label predictions internally for the supervised models by reconstructing the label matrix, we found
that using an external classifier further improves the performance in all models. However, we noticed
that models with explicit SS label based constraints, SS-NMF and MF-Plan, were less sensitive
to the external LR unlike other models. We define two aggregate metrics to measure the overall
performance of models across datasets viz: Rank and Penalty. Rank of a model is defined as the
average position of the model when the results are ordered in descending order in each dataset and
Penalty of the model is defined as the average difference from the best performing model in each
dataset. The lower the rank and penalty, the better is the performance of the model.

Table 1: Node Classification Results | Micro-F1 Scores

Non-negative Matrix Factorization models Sampling
Proposed SOTA Proposed Baseline Variants SOTA SOTA SOTA

Datasets SS-NMF MMDW MFDWL MF-Plan MNMFL MNMF MFDW DW
Cora 85.84 83.92 83.69 84.38 84.55 82.66 80.37 80.15
Citeseer 69.75 67.25 68.62 69.52 69.00 63.57 59.71 57.27
Wiki 67.02 66.69 66.18 66.42 66.75 65.75 63.94 63.01
Washington 66.09 61.13 62.61 62.83 62.96 62.61 59.13 59.13
Wisconsin 54.14 50.67 50.38 52.13 52.76 51.13 49.02 48.12
Texas 61.70 56.38 58.51 59.36 57.45 57.45 56.38 58.51
Cornell 52.04 51.22 50.94 52.04 52.04 51.45 50.00 38.78
PPI 23.09 23.58 22.19 22.16 21.45 21.23 21.75 22.22
Blogcatalog 36.35 34.72 34.36 34.53 34.88 34.42 32.05 40.59

Rank 1.33 3.67 5.00 3.33 3.44 5.78 7.11 6.33
Penalty 0.7267 2.3144 2.6700 2.0156 2.1856 3.4711 5.4622 5.9700

In Table: 1, the bold-ed entries in a dataset column denote the best score achieved in that dataset and
the underlined entries denote the second best score. Matrix factorization based DW, MFDW performs
better than sampling-based DW as shown in Tu et al. (2016) on all but PPI and Blogcatalog. In these
datasets, we found the Cross-Entropy (CE) loss used in DW to be an attributing factor for improved
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performance. We believe a CE based Matrix reconstruction loss could improve the performance on all
the models in the MF framework. All supervised models obtain better ranking and lower penalty over
unsupervised models. The SS variants of the unsupervised models are better than their unsupervised
counterparts on all datasets, i.e., MNMFL > MNMF and MFDWL > MFDW. SS-NMF outperforms
its base model, MFDWL on all datasets which is a clear indicator that learning cluster invariant
representations are useful. SS-NMF is ranked first in 7/9 datasets, while being ranked second on
the remaining two. Thus, obtaining an average rank score of 1.33 and the lowest penalty of 0.7267.
On the datasets where SS-NMF is ranked first, as per the paired t-test, there exists no case where
p− value < 0.05 and t-scores are positive (i.e., no competing method significantly beats SS-NMF).
The two datasets where SS-NMF failed can be attributed to its competitor’s superiority. Ignoring
SS-NMF, on PPI all the other models perform similarly and MMDW easily beats the best among
them by more than 1.3%. This shows the effectiveness of using Max-margin based label prediction
loss. It is expected (based on results) that modifying MMDW to have our proposed within-cluster
label smoothness can achieve SOTA results across all datasets.

3.3 Clusterability of learned representations

We validate superior clusterability of the learned node representations quantitatively in Table: 2 and
qualitatively with t-SNE plots provided in Appendix. In Table: 2 we report the averaged cluster
quality of learned embeddings of models trained with 50% labeled data over 5 folds, and 5 runs with
different initialization techniques (random, k-means++, PCA based). The clusters were obtained with
k-means and Fuzzy c-means algorithms for multi-class and multi-label datasets correspondingly. The
optimal number of clusters was obtained using gap statistics Tibshirani et al. (2001). We evaluate the
obtained clusters against gold standard classes as gournd truth clusters and report the NMI scores.
We used Overlapping NMI Lancichinetti et al. (2009), McDaid et al. (2011) for overlapping clusters
to evaluate the multi-label datasets.

From Table: 2, it is evident that SS-NMF performs well in semi-supervised node clustering. It is
the best performing model on 7 datasets where it beats the second best model by 1-7%, and it is
the second best performing model on the other two datasets where it is falling short of the best by
a mere 0.1%. All the semi-supervised NMF models outperform the unsupervised NMF models
except for MMDW which is outperformed by MNMF. Both MFDWL and MNMFL outperform their
unsupervised counterparts, MFDW and MNMF. The supervised MMDW outperforms the simple
unsupervised MFDW in all but Cornell. However, it is thoroughly washed out in comparison against
the unsupervised MNMF. Though MMDW’s max-margin representations outperformed unsupervised
MNMF in many of the datasets for node classification task, it seems that they are not well clusterable.
Consistent superior performance of SS-NMF & MF-Plan suggests that the label similarity based
clusterability criteria can learn informative node representations beyond the graph structure. This is
supported by the t-SNE plots too, especially that of SS-NMF which provides superior high-quality
visualizations of well separable homophilous clusters.

Table 2: Node Clustering | (O)NMI Scores

Non-negative Matrix Factorization models Sampling
Proposed SOTA Proposed Baseline Variants SOTA SOTA SOTA

Dataset SS-NMF MMDW MFDWL MF-Plan MNMFL MNMF MFDW DW
Cora 54.40 36.44 51.38 51.80 53.21 39.29 34.40 34.28
Citeseer 50.94 22.61 28.94 48.19 41.19 29.96 17.71 19.04
Wiki 52.60 35.68 47.80 47.80 48.38 45.62 28.31 32.57
Washington 40.27 13.65 18.45 31.41 33.52 19.90 09.93 02.88
Wisconsin 31.52 07.79 06.81 28.38 17.89 11.20 06.09 05.04
Texas 36.30 07.63 10.61 28.72 15.14 09.00 02.85 02.70
Cornell 04.77 03.70 04.49 04.89 04.14 03.99 04.16 03.53
PPI 09.76 08.44 08.26 09.36 09.19 08.77 07.91 09.44
Blogcatalog 14.31 06.07 06.18 07.36 08.61 06.93 03.06 03.71

Rank 1.11 6.00 4.77 4.67 2.89 4.67 7.11 7.00
Penalty 0.0133 16.9977 12.4522 4.1200 7.0800 13.3700 20.0633 20.2000
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4 Appendix

4.1 t-SNE Visualization

Further, we also present the details of t-SNE experiment on the learned node embeddings for Citeseer
and Cora dataset in Figure: 2 & 1. t-SNE plots are specially well-suited for the visualization of
high dimensional data. As t-SNE algorithm scales quadratically in terms of the number of nodes N,
we first reduced the dimension of learned node embeddings to 64 retaining as much information as
possible using Principal Component Analysis (PCA) algorithm. Next, we fed this reduced data to
t-SNE algorithm. In t-SNE, the perplexity term controls the number of neighbours for each sample
to take into consideration while preserving the local structure in the reduced dimension space. We
experimented with perplexity in the range of 10 − 100 increasing by a step size of 10 and found
that it did not affect the visualizations much from 30 onwards. So we fixed 40 as a common value
of perplexity for all the competing methods. It can be seen that our proposed model obtains better
clusters visually compared to other SS methods due to label similarity based cluster-enhanced node
embeddings learned.

Figure 1: t-SNE Visualization of embeddings on Cora dataset

(a) MFDWL (b) MF-Plan (c) MNFL (d) SS-NMF

Figure 2: t-SNE Visualization of embeddings for Citeseer dataset

(a) MFDWL (b) MF-Plan (c) MNFL (d) SS-NMF

4.2 Datasets details

Description of the datasets used are provided below with summary statistics tabulated in Table: 3.

WWW networks: WebKB Chakrabarti et al. (1998) consists of four small networks collected from
four different universities - Washington, Wisconsin, Texas and Cornell. The networks are a collection
of web pages as nodes where the task is to predict the type of webpage.

Citation networks: In the following citation networks, nodes are the research papers and edges exist
if one paper cites another. Cora Craven et al. (1998), Citeseer McCallum et al. (2000), Wiki Sen et al.
(2008) and Pubmed are four bibliographic datasets where the task is to predict the research area of
the paper.

Biological network: PPI Stark et al. (2006) is a protein-protein interaction biological dataset for
Homo Sapiens where the task is to predict the functional properties for proteins from the hallmark
gene sets.

Social network: BlogCatalog Zafarani and Liu (2009) Tang and Liu (2009) Tang and Liu (2009)
is a social network dataset with entities as bloggers and edges depicting friendship between them.
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Classes are the topic of interests of the bloggers inferred through their blogs. PPI and BlogCatalog
are multi-label classification datasets while the rest are all multi-class classification datasets.

Table 3: Datasets used in this experiment
V : nodes, E: edges, Y : labels, ML: multi-label dataset

Dataset |V | |E| |Y | ML Avg Degree

Washington 230 596 5 F 4.88
Wisconsin 265 724 5 F 5.0
Texas 186 464 5 F 4.51
Cornell 195 478 5 F 4.12
Cora 2, 708 5, 278 7 F 2.00
Citeseer 3, 312 4, 732 6 F 1.42
Wiki 2, 405 17, 981 19 F 6.87
PPI 3, 890 76, 584 50 T 19.69
Blogcatalog 10, 312 3, 33, 983 39 T 64.78
Pubmed 19, 717 44, 338 3 T 4.50

4.3 Derivation of multiplicative update rules

Here, we give the detailed derivation for Eqn: 4 in order to get the multiplicative update equations for
learned factor matrices M,U,Q,C & H respectively.

O = αTr[(S − UTM)(S − UTM)T ] + βTr[(H − CU)(H − CU)T ]

+ θTr[W � {(Y −QU)(Y −QU)T }] + ζTr[(HHT − I)(HHT − I)T ]
+ φTr{HL(E)HT }+ λTr(MMT +QQT + CCT + UUT +HHT )

L = αTr[SST − 2SMTU + UTMMTU ]

+ βTr[HHT − 2HUTCT + CUUTCT ]

+ θTr[W � {Y Y T − 2Y UTQT +QUUTQT }]
+ ζTr[HHTHHT − 2HHT + I] + φTr{HL(E)HT }
+ λTr(MMT +QQT + CCT + UUT +HHT )

+ Tr[ψ1M
T + ψ2U

T + ψ3C
T + ψ4Q

T + ψ5H
T ]

Let ψ1, ψ2, ψ3, ψ4, ψ5 be the Lagrange multipliers for the non-negative constraints on factor matrices
M,U,Q,C,H respectively. We then have the Lagrange function L and obtaining partial derivatives
of L with respect to the respective factor matrices,
∂L
∂M

= −2αUS + 2αUUTM + 2λM + ψ1

∂L
∂C

= −2βHUT + 2βCUUT + 2λC + ψ3

∂L
∂Q

= −2θ(W � Y )UT + 2θ(W �QU)UT + 2λQ+ ψ4

∂L
∂U

= −2αMST − 2θQT (W � Y )− 2βCTH + 2αMMTU + 2βCTCU

+ θQT (W �QU) + 2λU + ψ2

∂L
∂H

= 2βH − 2βCU + 4ζHHTH − 4ζH + 2λH + 2φHD − 2φHE + ψ5

Using the KKT conditions, ψ1abmab = 0, ψ2abuab = 0, ψ3cacca = 0, ψ4daqda = 0 and ψ5cbhcb = 0,
where M = [mab], U = [uab], C = [cca], Q = [qda], H = [hcb] s.t. a, b, c, d are the respective row
& column indices. Solving Eqn: 4, We get the following update equations,

M =M � (
αUS

αUUTM + λM
) (5)
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C = C � (
βHUT

βCUUT + λC
) (6)

Q = Q� (
θ(W � Y )UT

θ(W �QU)UT + λQ
) (7)

U = U � (
αMST + βCTH + θQT (W � Y )

αMMTU + βCTCU + θQT (W �QU) + λU
) (8)

H = H � (
βCU + 2ζH + φHE

βH + 2ζHHTH + φHD + λH
)1/4 (9)

4.4 More on Baselines and Variants with the experiment setup

In this section, we briefly give the details of experiment setup we followed for the baselines already
described in section 3.1 along with the equation of baseline variants we have used in our experiment.
The semi-supervised experiment is set up with 50% labeled data are drawn randomly 5 times. All
classification and clustering results reported here are an average over these five sets. The results
reported are an average of these five sets. For all the competing algorithms we set the dimension of
the node embeddings as 128. We also extensively searched for optimal hyperparameter values for all
the competing methods using 20% of the training data as a validation set.

For original sampling based DeepWalk we set the window size to 5, the number of walks per source
node and the walk length in the range of [10, 40, 80] and report the best results. We also have MFDW
Eqn: 1 - the matrix factorized DeepWalk, as we build our model incrementally on top of it. For all the
matrix factorization based baselines, we vary the hyper-parameter values (the respective weightage
terms for each component in the objective function) in the range of [0.1, 0.5, 1.0, 5.0, 10.0].

Max-Margin DeepWalk (MMDW): In this paper Tu et al. (2016), max-margin loss is incorporated
in the objective function of MFDW to learn discriminative representations of vertices in networks. It
has one important hyper-parameter alpha-bias (η) that balances the importance of primal gradient
and biased gradient to induce max-margin loss based bias into random walk. We varied bias in the
range of η = [10−1, 10−2, 10−3, 10−4, 10−5] and weightage of proximity matrix factorization term
as α = [0.1, 0.5, 1.0, 5.0, 10.0].

MFDWL: We build a variant of MMDW which also incorporates supervised information into node
embeddings by jointly optimizing Eqn: 1 & 2. It works competitively as compared to MMDW.

Planetoid & MF-Planetoid: Planetoid Yang et al. (2016) learns an embedding space for nodes
by jointly enforcing label and neighborhood similarity. Planetoid uses random walks to enforce
structural similarity. Embeddings of nodes which appear in the random walks of a node are made to
be similar to the node while others are made to be dissimilar. It can be seen as a similar approach to
ours that uses the notion of label similarity to keep node embeddings close in the manifold space but
does not explicitly learn and incorporate any global structure (clusters/ communities) into the node
embeddings. As we observed poor performance of Planetoid on random test-train splits, we derive a
matrix-factorized version of Planetoid as an alternative baseline. It enforces label smoothness E, i.e,
train-label similarity on embedding space U , unlike ours as in Eqn: 3 on cluster space.

LMF−Plan = O(MFDWL) + Tr{UL(E)UT } (10)

MNMF & MNMFL: MNMF Wang et al. (2017), as introduced earlier, one recent state-of-the-art
matrix factorization approach that incorporates both mesoscopic and microscopic structure of network
into node representations by discovering communities through modularity maximization. We build
one semi-supervised variant of MNMF, viz. MNMFL by jointly optimizing its objective function
along with Eqn: 2. Unlike the original MNMF paper that factorizes a combination of first order and
cosine similarity based second order node proximity to learn node representations, here, for sake of
fair comparison, we stick to a combination of first order and second order transition probability based
proximity matrix as S, following MMDW Tu et al. (2016).
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